Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41
⇒ y = {0; ±1; ±2; ±3}
Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy)
Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒ x = −1
x = −2
- Với y=-1............................ bạn làm tương tự
Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.
mà \(2x+1\)lẻ
\(\Rightarrow\)\(5y\) là số chẵn
\(\Rightarrow\)\(y\) là số chắn
Có \(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn
\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ
\(\Rightarrow\)\(x=\pm1\).
Với \(x=1\)ta có:
\(\left(5y+3\right)\left(y+3\right)=65\)
suy ra \(y=2\).
Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn.
Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ
<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ
=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
\(x^5+y^2=xy^2+1\)
\(\Rightarrow x^5+y^2-xy^2-1=0\)
\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)
\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
cảm ơn bạn nhưng còn hơi dài =))