K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

Sử dụng phương pháp Delta cho bài toán này:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)

Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.

Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)

\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).

Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại) 

Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Vậy....

Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)

\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)

Đến đây ta xét các trường hợp:

Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)

Vậy...

 

 

27 tháng 11 2023

cảm ơn bạn nhưng còn hơi dài =))

(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41

⇒ y = {0; ±1; ±2; ±3} 

Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy) 

 Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒  x = −1

                                                         x = −2

- Với y=-1............................ bạn làm tương tự

DD
27 tháng 11 2021

Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.

mà \(2x+1\)lẻ 

\(\Rightarrow\)\(5y\) là số chẵn

\(\Rightarrow\)\(y\) là số chắn

\(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn

\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ

\(\Rightarrow\)\(x=\pm1\).

Với \(x=1\)ta có: 

\(\left(5y+3\right)\left(y+3\right)=65\)

suy ra \(y=2\).

Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn. 

Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).

28 tháng 11 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ

<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ 

=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

4 tháng 10 2018

\(x^5+y^2=xy^2+1\)

\(\Rightarrow x^5+y^2-xy^2-1=0\)

\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)

\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)

4 tháng 10 2018

cảm ơn bạn Nguyễn Xuân Anh nha

19 tháng 3 2017

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:

\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)

\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)

Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)

\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)

Suy ra \(b^2+1\inƯ\left(10\right)=....\)

Tự làm nốt nhá, trở thành bài lớp 6 r` :)

19 tháng 3 2017

Mơn nhìu ạ