Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 25 = y(y + 6)
<> x^2 - 25 + 9 = y^2 + 6y + 9
<> x^2 - 16 = (y + 3)^2
<> x^2 - (y + 3)^2 = 16
<>(x - y - 3)(x + y +3) = 16
vi x,y nguyên nên xay ra các trường hợp sau
+ x - y - 3 = 16 và x + y + 3 = 1 giải hệ này loại
+ x - y -3 = 8 và x + y + 3 = 2
<>x = 5 và y = -6
tương tự
.....................................
+ x - y - 3 =-8 và x + y + 3 = -2
bạn tự gải tiếp nhé
good luck
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
x2-25=y(y+6)
<=> x2-(y+3)2=16
<=> (x+y+3)(x-y-3) = \(\left(\pm4\right)\left(\pm4\right);\left(\pm2\right)\left(\pm8\right);\left(\pm1\right)\left(\pm16\right)\)
x-y | 7 | -1 | 5 | 1 | 11 | -5 | 4 | 2 | 12 | -13 |
x+y | 1 | 7 | 5 | -11 | -1 | 5 | 13 | -19 | -2 | -4 |
Đến đây áp dụng cách tính tổng hiệu là tìm được (x;y)
Vậy các cặp số nguyên (x;y) thỏa mãn cần tìm là:
(4;-3);(-4;-3);(5;0);(-5;-6);(5;-6);(5;-6);(-5;0)
Bài làm
Ta có : y( x - 1 ) = x2 + 2
<=> x2 + 2 - y( x - 1 ) = 0
<=> x2 - x + x - 1 + 3 - y( x - 1 ) = 0
<=> x( x - 1 ) + ( x - 1 ) - y( x - 1 ) + 3 = 0
<=> ( x - 1 )( x - y + 1 ) = -3
Vì x, y ∈ Z => \(\hept{\begin{cases}x-1\inℤ\\x-y+1\inℤ\end{cases}}\)
Lại có \(-3=\hept{\begin{cases}-1\cdot3\\-3\cdot1\end{cases}}\)
=> Ta có bảng sau :
x-1 | 1 | -1 | 3 | -3 |
x-y+1 | -3 | 3 | -1 | 1 |
x | 2 | 0 | 4 | -2 |
y | 6 | -2 | 6 | -2 |
Tất cả các giá trị trên đều thỏa x, y ∈ Z
Vậy ( x ; y ) = { ( 2 ; 6 ) , ( 0 ; -2 ) , ( 4 ; 6 ) , ( -2 ; -2 ) }
y(x - 1) = x2 + 2
=> y(x - 1) - x2 - 2 = 0
=> y(x - 1) - x2 + 1 = 3
=> y(x - 1) - (x2 - 1) = 3
=> y(x - 1) - (x - 1)(x + 1) = 3
=> (x - 1)(y - x - 1) = 3
Ta có 3 = 1.3 = (-1).(-3)
Lập bảng xét các trường hợp
x - 1 | 1 | 3 | -1 | -3 |
y - x - 1 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -2 |
y | 6 | 6 | -2 | -2 |
Vậy các cặp số (x;y) thỏa mãn là (2;6) ; (4;6) ; (0;-2) ; (-2;-2)
Lời giải:
$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$
$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$
$\Leftrightarrow x^2-(y+3)^2=16$
$\Leftrightarrow (x-y-3)(x+y+3)=16$
Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi.
Lời giải:
$x^2-25=y(y+6)$
$\Leftrightarrow x^2-25=y^2+6y$
$\Leftrightarrow x^2-16=y^2+6y+9=(y+3)^2$
$\Leftrightarrow x^2-(y+3)^2=16$
$\Leftrightarrow (x-y-3)(x+y+3)=16$
Do $x,y$ nguyên nên $x-y-3, x+y+3$ cũng là số nguyên. Đến đây là dạng PT tích đơn giản rồi.
a) \(x^2-25=y\left(y+6\right)\)
\(\Leftrightarrow x^2-\left(y+3\right)^2=16\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-3\right)=16=1.16=...\)
Vậy có 6 cặp số (x;y):....