\(3a-b+2ab-10=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2021

https://hoidap247.com/cau-hoi/246405

bạn tìm  ở đây nhé

Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik

25 tháng 2 2020

Bạn tham khảo:
3a−b+2ab−10
⇒2ab−b+3a=10 
⇒b(2a−1)+3a=10
⇒2b(2a−1)+6a=10.2
⇒2b(2a−1)+6a−3=20−3
⇒2b(2a−1)+3(2a−1)=17
⇒(2a−1)(2b+3)=17
⇒2a−1∈Ư(17)=⇒2a−1∈Ư(17)= { ±1;±17±1;±17 }

.) Nếu 2a−1=12a−1=1 thì 2b+3=172b+3=17 
⇒a=1;b=7
.) Nếu 2a−1=−12a−1=−1 thì 2b+3=−172b+3=−17
⇒a=0;b=−10
.) Nếu 2a−1=172a−1=17 thì 2b+3=12b+3=1
⇒a=9;b=−1
.) Nếu 2a−1=−172a−1=−17 thì 2b+3=−12b+3=−1
⇒a=−8;b=−2

11 tháng 2 2020

1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100

= 3x(3 + 32 + ... + 3100

= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 3+ 38) + ... + (397 398 + 399 + 3100)]

= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]

= 3x(120 + 34.120 + .... + 396.120)

= 3x.120.(1 + 34 + .... + 396)

=> \(M⋮120\)(ĐPCM)

2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Nếu a + b + c = 0

=> a + b = - c

b + c = -a

c + a = -b

Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Vậy nếu a + b + c = 0 thì P = -3

nếu a + b + c  \(\ne\)0 thì P = 6

11 tháng 2 2020

Ta có : 

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

Vì \(120⋮120\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)

12 tháng 1 2019

 giải:

Ta có : \(\frac{4a}{5}+\frac{9b}{10}+c=10\) 

=> \(\frac{8a+9b+10c}{10}=10\)

=> \(8a+9b+10c=100\)

Ta có : \(8a+8b+8c< 8a+9b+10c\)

=> \(a+b+c< \frac{100}{8}< 13\)

Mà :\(11< a+b+c\) => \(11< a+b+c< 13\)

Do \(a+b+c\) nguyên dương =>\(a+b+c=12\)

Ta có:\(\hept{\begin{cases}a+b+c=12\left(1\right)\\8a+9b+10c=100\left(2\right)\end{cases}}\)

nhân 2 vế của\(\left(1\right)\) với 8 ta được

\(\hept{\begin{cases}8a+8b+8c=96\left(3\right)\\8a+9b+10c=100\end{cases}}\)

trừ theo vế của \(\left(2\right)\) cho \(\left(3\right)\)ta được:\(b+2c=4\left(4\right)\)

từ \(\left(4\right)\) =>\(c=1\) vì nếu \(c>=2\) thi do b>=1 =>b+2c>4(mt)

với \(c=1\)=>\(b=2,c=9\)

19 tháng 1 2019

Tự hỏi tự trả lời là sao đây

29 tháng 6 2018

Ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)

\(=\frac{a+b+c+d}{3b+3c+3d+3a}\)

\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}\)

\(=\frac{1}{3}\)

Với \(\frac{a}{3b}=\frac{1}{3}=>a=\frac{1}{3}.3b=>a=b\)

Với \(\frac{b}{3c}=\frac{1}{3}=>b=\frac{1}{3}.3c=>b=c\)

Với \(\frac{c}{3d}=\frac{1}{3}=>c=\frac{1}{3}.3d=>c=d\)

Vậy a = b = c = d ( Đpcm )

19 tháng 3 2020

cảm ơn bạn

1)

Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)

Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)

+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)

+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)

+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)

Vậy GTNN của \(C=-6\) khi \(x=\pm2\)

2) 

Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)

Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)

Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)

5 tháng 1 2020

Ví dụ một bài toán : 

Tìm GTLN của B = 10-4 | x-2| 

Vì |x-2| \(\ge0\forall x\)

\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ