K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Gọi d=UCLN(2n+1;3n+1)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(75n+6;8n+7)

\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)

\(\Leftrightarrow d=13\)

=>UC(5n+6;8n+7)={1;-1;13;-13}

5 tháng 2 2016

+ Nếu p=2 => p+4=2+4=6 \(\div\) 2 ( Hợp số ) ( Loại )

+ Nếu p=3 => p+4 =3+4=7 ( SNT )

                     p+20=3+20=23 (SNT ) ( nhận )

+ Nếu p=3k+1 => p+20=3k+1+20=3k+21 \(\div\) 3 ( Hợp số )(Loại)

+ Nếu p = 3k + 2 => p+4=3k+2+4=3k+6 \(\div\) 3 ( Hợp số ) (loại)

Vậy : p=3

* Chú ý : \(\div\) : Chia hết

5 tháng 2 2016

số 3 đó bạn !!!

DT
2 tháng 10 2023

Để A là snt thì : x - 2 = 1 hoặc x^2 + 2x + 2 =1

=> x = 3 hoặc (x+1)^2 = 0

=> x = 3 hoặc x = -1

Thử lại : Với x = 3 thì A = 17 là snt

Với x = -1 thì A = -3 ( k là snt )

Vậy x = 3

21 tháng 8 2018

Nếu n=0 thì n + 9 = 0 + 9 = 9; n + 15 = 0 + 15 = 15 đều là hợp số (loại)

Nếu n = 1 thì n + 3 = 1 + 3 = 4; n + 7 = 1 + 7 = 8; n + 9 = 1 + 9 = 10; n + 13 = 1 + 13 = 14; n + 15 = 1 + 15 = 16 đều hợp số (loại)

Nếu n = 2 thì n + 7 = 2 + 7 = 9; n + 13 = 2 + 13 = 15 là hợp số (loại)

Nếu n = 3 thì n + 1 = 3 + 1 = 4; n + 3 = 3 + 3 = 6; n + 7 = 3 + 7 = 10; n + 9 = 3 + 9 = 12; n + 13 = 3 + 3 = 16; n + 15 = 3 +15=18 đều là hợp số (loại)

Nếu n = 4 thì n + 1 = 4 + 1 = 5; n + 3 = 4 + 3 = 7; n + 7 = 4 + 7 = 11; n + 13 = 13 + 4 = 17; n + 15 = 15 + 4 = 19; n +9= 4 + 9= 13 đều là số nguyên tố (chọn)

Nếu n = 5 thì n + 1 = 1 + 5= 6;n+ 3 = 5 + 3 = 8;n + 9 = 5 + 9 = 14;n + 13 = 5 + 13 = 18;n + 15 = 15 + 15 = 20 đều là hợp số (loại)

Xét n> 5 thì n = 5k + 1 hoặc 5k + 2 hoặc 5k + 3 hoặc 5 k + 4

Nếu n = 5k+ 1 thì n + 9 = 5k + 1 + 9 = 5k + 10 = 5x (k + 2) chia hết cho 5 (loại)

Nếu n = 5k + 2 thì n + 3 = 5k + 2 + 3 = 5k + 5 = 5 x (k+ 1) chia hết cho 5;n + 13 = 5k+ 2 + 13 = 5k+ 15 = 5 x(k+3)chia hết cho 5 (loại)

Nếu n=5k + 3 thì n + 7 = 5k + 3 + 7 = 5k + 10 = 5 x (k+2) chia hết cho 5 (loại)

Nếu n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 = 5 x (k+ 1) chia hết cho 5 (loại)

Suy ra n < 5. Vậy n = 4 thì n + 1; n + 3;n + 9; n + 3;n + 13; n + 15 là số nguyên tố.

21 tháng 8 2018

k đê!!

27 tháng 6 2016

+ Nếu p = 3 thì \(p^2+14=23\)là số nguyên tố.

+ Nếu p > 3. Vì p là số nguyên tố nên p không chia hết cho 3.

  • Nếu p chia 3 dư 1 thì  p = 3k + 1 và \(p^2+14=9k^2+6k+15=3\left(3k^2+2k+5\right)\)chia hết cho 3 nên không phải số nguyên tố.
  • Nếu p chia 3 dư 2 thì  p = 3k + 2 và \(p^2+14=9k^2+6k+24=3\left(3k^2+2k+8\right)\)chia hết cho 3 nên không phải số nguyên tố.

Vậy chỉ có p = 3 thỏa mãn yêu cầu của đề bài.

27 tháng 6 2016

Nếu p=2 => \(p^2+14\)= 22+14=18( loại )

Nếu p=3=> \(p^2+14\)=32+14=23 ( thỏa mãn )

=> Nếu p>3 => p không chia hết cho 3=>\(\hept{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)(k thuộc N*)

Nếu p= 3k+1 => \(p^2+14\)= (3k+1)2+14=9k2+6k+1+14=9k2+6k+14 chia hết cho 3 ( loại )

Nếu p=3k+2=> \(p^2+14\)= (3k+2)2+14= 9k2+12k+4+14=9k2+12k+18 chia hết cho 3 ( loại )

Vậy p=3

4 tháng 11 2015

Vì p là SNT > 3 nên p có 2 dạng: 

+ Nếu p = 3n + 1 (n thuộc N) thì ta có:

8p + 1 = 8(3n + 1) + 1 = 24n + 8 + 1 = 24n + 9 là hợp số (loại)

+ Nếu p = 3n + 2 (n thuộc N) thì ta có:

8p + 1 = 8(3n + 2) + 1 = 24n + 16 + 1 = 24n + 17 là SNT (chọn)
Thay p = 3n + 2 vào 4p + 1, ta có:

4(3n + 2) + 1 = 12n + 8 + 1 = 12n + 9 là hợp số.

Vậy 4p + 1 là hợp số (ĐPCM)