K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 10 2019

ĐKXĐ: \(x\ge1\)

\(x^2-2x=y\Rightarrow\left(x-1\right)^2=y+1\)

\(y^2+2y=z\Rightarrow\left(y+1\right)^2=z+1\)

Ta có:

\(x+y+z+1+\sqrt{x-1}=0\)

\(\Leftrightarrow y+1+z+1+x-1+\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(x-1\right)+\sqrt{x-1}=0\)

Do \(x\ge1\Rightarrow x-1\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(x-1\right)+\sqrt{x-1}\ge0\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-1\end{matrix}\right.\)

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

$x,y,z$ có thêm điều kiện nguyên/ nguyên dương gì không bạn?

9 tháng 5 2021

Ko bạn

 

13 tháng 7 2018

Aki Tsuki hattori heiji Akai Haruma

12 tháng 9 2023

Ta bắt đầu bằng việc giả sử một giá trị ban đầu cho x, y và z, sau đó lặp lại quá trình tính toán cho đến khi đạt được độ chính xác mong muốn.

Ví dụ, giả sử ta chọn x = 1, y = 1 và z = 1 làm giá trị ban đầu. Sau đó, ta thực hiện các bước sau:

Bước 1: Tính toán giá trị mới cho x, y và z bằng cách sử dụng các phương trình đã cho: x_new = (2y - 1) / sqrt(y) y_new = (2z - 1) / sqrt(z) z_new = (2*x - 1) / sqrt(x)

Bước 2: Kiểm tra độ chính xác của giá trị mới so với giá trị cũ. Nếu đạt được độ chính xác mong muốn, ta dừng lại. Nếu không, ta lặp lại bước 1 với giá trị mới của x, y và z.

Tiếp tục lặp lại quá trình trên cho đến khi đạt được độ chính xác mong muốn. Khi đó, ta sẽ có giá trị x, y và z tương ứng là nghiệm của hệ phương trình đã cho.

14 tháng 9 2023

Cảm ơn bạn nha~~~

26 tháng 11 2021

Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)

Điều kiện bài toán trở thành :

\(a+1+b+2+c+3< 9\)

\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)

\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)

\(a+b+c< 3\)

\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)

Mặt khác, do aa không âm, ta luôn có:

\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)

\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)

\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)

Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)

\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)

Cộng vế với vế (1);(2);(3):

\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)

\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)

Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)

⇒x=...;y=...;z=...

30 tháng 11 2019

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

29 tháng 11 2019

Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,

Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6

Help meeee, please!

thanks nhiều

NV
23 tháng 11 2019

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

23 tháng 11 2019

Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,

Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma

giúp em vs ạ! Cần trước 5h chiều nay ạ

Thanks nhiều