Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y=\left(3-sinx\right)\left(1-sinx\right)\ge0\)
\(\Rightarrow y_{min}=0\) khi \(sinx=1\)
\(y=sin^2x-4sinx-5+8=\left(sinx+1\right)\left(sinx-5\right)+8\le8\)
\(y_{max}=8\) khi \(sinx=-1\)
4.
\(0\le\sqrt{sinx}\le1\Rightarrow3\le y\le5\)
\(y_{min}=3\) khi \(sinx=0\)
\(y_{max}=5\) khi \(sinx=1\)
5.
Đề là \(cos^24x\) hay \(cos\left(\left(4x\right)^2\right)\)
Hai biểu thức này cho 2 kết quả khác nhau
1.
\(y=\sqrt{5-\frac{1}{2}\left(2sinx.cosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)
Do \(0\le sin^22x\le1\) \(\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)
\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)
\(y_{max}=\sqrt{5}\) khi \(sin2x=0\)
2.
\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)
Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)
\(y_{min}=-2\) khi \(cosx=0\)
\(y_{max}=3\) khi \(cos^2x=1\)
\(\Leftrightarrow\left(sin^2x-3cos^2x\right)+\left(\sqrt{6}cosx-\sqrt{2}sinx\right)=0\)
\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)-\sqrt{2}\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{3}cosx\\sinx+\sqrt{3}cosx=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\sin\left(x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{3}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)