√|2x−4|

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

@Nguyễn Việt Lâm tui cx cần bài này, trình bày cho tui dới, bik đáp án mà 0 bik trình bày

NV
23 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x^2+2x+2\ge0\left(\text{luôn đúng}\right)\\\sqrt{x^2+2x+2}-\left(x+1\right)\ge0\left(1\right)\end{matrix}\right.\)

Xét (1), ta có:

\(\sqrt{x^2+2x+2}=\sqrt{\left(x+1\right)^2+1}>\sqrt{\left(x+1\right)^2}=\left|x+1\right|\ge x+1\)

\(\Leftrightarrow\sqrt{x^2+2x+2}-\left(x+1\right)>0\) ; \(\forall x\)

\(\Rightarrow\) BPT (1) luôn đúng với mọi x

Vậy hàm số xác định trên R

2 tháng 4 2017

a) Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.

Vậy tập xác định của hàm số là:

D = { x ∈ R/2x + 1 ≠ 0} =

b) Tương tự như câu a), tập xác định của hàm số đã cho là:

D = { x ∈ R/x2 + 2x - 3 ≠ 0}

x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1

Vậy D = R {- 3; 1}.

c) có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0

có nghĩa với x ∈ R sao cho 3 - x ≥ 0

Vậy tập xác định của hàm số là:

D = D1 ∩ D2, trong đó:

D1 = {x ∈ R/2x + 1 ≥ 0} =

D2 = {x ∈ R/3 - x ≥ 0} =


28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)