K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2020

ĐKXĐ: \(\left\{{}\begin{matrix}\frac{1+tanx}{1-tanx}\ge0\\tanx\ne1\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-1\le tanx< 1\\x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Rightarrow-\frac{\pi}{4}+k\pi\le x< \frac{\pi}{4}+k\pi\)

21 tháng 6 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau có bài em đăng trong link này để đc các bạn giúp đỡ nhé!

+)\(y=\frac{1}{\sqrt{1+\cos4x}}\)

ĐKXĐ: \(\cos4x+1>0\Leftrightarrow\cos4x>-1\Leftrightarrow\cos4x\ne-1\)

\(\Leftrightarrow4x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\), k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{4}+\frac{k\pi}{2}\right\}\), k thuộc Z

+) \(y=\sqrt{\tan x-\sqrt{3}}\)

ĐKXĐ: \(\hept{\begin{cases}\tan x-\sqrt{3}\ge0\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}\tan x\ge\tan\frac{\pi}{3}\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow}\frac{\pi}{3}+k\pi\le x< \frac{\pi}{2}+k\pi}\)

TXĐ:...

NV
6 tháng 6 2021

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6 tháng 6 2021

cho hỏi cái này tí nha    \(sin\alpha\)=1/2  và \(cos\alpha\)=\(\dfrac{-\sqrt{3}}{2}\)

thì góc đó là \(\alpha=?\pi\)

6 tháng 6 2019

Ban đầu bạn phân tích từ sin2x - 2 ≠ 0 thành sinx.cosx ≠ 1.

Sao đến cuối bạn lại biến sinx.cosx ≠ 1 thành sin2x ≠ \(\frac{1}{2}\)

17 tháng 6 2021

ĐKXĐ: \(\left\{{}\begin{matrix}tanx\ne1\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

30 tháng 6 2017

a) T = k2π (k ∈ Z)

b) T = kπ (k ∈ Z)

14 tháng 1 2019

Hàm số Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11 xác định

Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Vậy tập xác định của hàm số là Giải bài 2 trang 17 sgk Đại số 11 | Để học tốt Toán 11

16 tháng 10 2023

Ta có hàm số: \(y=\dfrac{1-cosx}{tanx}\) hàm số được xác định khi:

\(\left\{{}\begin{matrix}cosx\ne0\\tanx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne k\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

Tập xác định của y là:

\(D=R\backslash\left(\dfrac{k\pi}{2};k\in Z\right)\)

23 tháng 10 2017

Điều kiện: cosx ≠ 0; sinx ≠ 0 và sin2x ≠ 1.

⇔ x ≠ kπ/2, k ∈ Z và x ≠ π/4 + kπ, k ∈ Z.

Vậy tập xác định của hàm số là

D \ R [(kπ/2,k ∈ Z)] ∪ [(π/4 + kπ,k ∈ Z)].

22 tháng 11 2018

Điều kiện: cos(x- π/3) ≠ 0 và tan(x- π/3) ≠ -1.

⇔ x- π/3 ≠ π/2 + kπ, k ∈ Z và x- π/3 ≠ (-π)/4 + kπ, k ∈ Z.

⇔ x ≠ 5π/6 + kπ, k ∈ Z và x ≠ π/12 + kπ, k ∈ Z.

Vậy tập xác định của hàm số là

D = R \ [(5π/6 + kπ,k ∈ Z)] ∪ [(π/12 + kπ,k ∈ Z)].