K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Giải bài 1 trang 38 sgk Đại số 10 | Để học tốt Toán 10 có nghĩa khi 2x + 1 ≠ 0 ⇔ x ⇔ –1/2.

Vậy tập xác định của hàm Giải bài 1 trang 38 sgk Đại số 10 | Để học tốt Toán 10 là D = R \ {-1/2}.

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

27 tháng 11 2023

\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)

\(=\sqrt{x+2+2\sqrt{x+2}+1}+\sqrt{1-x^2+2\cdot\sqrt{1-x^2}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{x+2}+1\right)^2}+\sqrt{\left(\sqrt{1-x^2}+1\right)^2}\)

\(=\left|\sqrt{x+2}+1\right|+\left|\sqrt{1-x^2}+1\right|\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\1-x^2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-2\\x^2< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\-1< =x< =1\end{matrix}\right.\)

=>-1<=x<=1

TXĐ là D=[-1;1]

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)

Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)

b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)

Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)

Tập xác định \(D = \left( {1; + \infty } \right)\)

11 tháng 5 2019

Điều kiện xác định:  

Chọn B.

11 tháng 1 2018

Đáp án B

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Tìm tập xác định của hàm số: \(y = \frac{{\sqrt {x + 2} }}{{x - 3}}\) là \(\left\{ \begin{array}{l}x + 2 \ge 0\\x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 2\\x \ne 3\end{array} \right.\)

Vậy tập xác định của hàm số là \(D = \left[ { - 2; + \infty } \right)\backslash \left\{ 3 \right\}\).