K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Biểu thức g(x) = 3/(x + 2) xác định khi x + 2 ≠ 0 ⇔ x ≠ -2

TXĐ của hàm số là D = R\{-2}

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

11 tháng 5 2019

Điều kiện xác định:  

Chọn B.

11 tháng 1 2018

Đáp án B

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Tìm tập xác định của hàm số: \(y = \frac{{\sqrt {x + 2} }}{{x - 3}}\) là \(\left\{ \begin{array}{l}x + 2 \ge 0\\x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 2\\x \ne 3\end{array} \right.\)

Vậy tập xác định của hàm số là \(D = \left[ { - 2; + \infty } \right)\backslash \left\{ 3 \right\}\).

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

Lời giải:
ĐKXĐ: $x^2+2x-3\neq 0$

$\Leftrightarrow (x-1)(x+3)\neq 0$

$\Leftrightarrow x-1\neq 0$ và $x+3\neq 0$

$\Leftrightarrow x\neq 1$ và $x\neq -3$

Vậy TXĐ là $\mathbb{R}\setminus \left\{-3;1\right\}$

NV
9 tháng 3 2021

ĐKXĐ: \(\left\{{}\begin{matrix}3-x\ge0\\7x^2-x-6\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{6}{7}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\le-\dfrac{6}{7}\\1\le x\le3\end{matrix}\right.\)

27 tháng 11 2023

\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)

\(=\sqrt{x+2+2\sqrt{x+2}+1}+\sqrt{1-x^2+2\cdot\sqrt{1-x^2}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{x+2}+1\right)^2}+\sqrt{\left(\sqrt{1-x^2}+1\right)^2}\)

\(=\left|\sqrt{x+2}+1\right|+\left|\sqrt{1-x^2}+1\right|\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\1-x^2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-2\\x^2< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\-1< =x< =1\end{matrix}\right.\)

=>-1<=x<=1

TXĐ là D=[-1;1]