K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2021

d.

ĐKXĐ: \(x\left|x\right|-4>0\)

\(\Leftrightarrow x\left|x\right|>4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)

e.

ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)

Ta có:

\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)

NV
12 tháng 7 2021

f.

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)

Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)

Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)

Kết hợp với \(x\ge-2\Rightarrow x>-2\)

10 tháng 7 2021

Trình bày xấu, bạn thông cảm!undefined

10 tháng 7 2021

\(a.ĐKXĐ:\left\{{}\begin{matrix}\left|x\right|+4\ne0\\x-x^2\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)

TXĐ : \(D=\left[0;1\right]\)

b. ĐKXĐ: \(\left|x-3\right|+\left|x+3\right|\ne0\)

Ta có : \(\left|x-3\right|+\left|x+3\right|\ge\left|x-3-x-3\right|=6>0\)

Nên hàm số xác định với mọi x

Tập xác định \(D=R\)

c. ĐKXĐ: \(\left\{{}\begin{matrix}\left|x\right|-1\ne0\\x^2-\left|x\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\left|x\right|\left(\left|x\right|^3-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left|x\right|^3-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\\x< -1\end{matrix}\right.\)

TXĐ : \(D=\left\{0\right\}U\left(-\infty;-1\right)U\left(1;+\infty\right)\)

 

NV
8 tháng 10 2021

d.

Với \(x-4\ne0;\forall x< 0\Rightarrow\dfrac{x-3}{x-4}\) xác định với mọi \(x< 0\)

\(x+1>0;\forall x\ge0\Rightarrow\sqrt{x+1}\) xác định với mọi \(x\ge0\)

\(\Rightarrow\) Hàm xác định trên R

e.

Ta có:

\(\sqrt{x^2+2x+5}-\left(x+1\right)=\sqrt{\left(x+1\right)^2+4}-\left(x+1\right)\)

\(>\sqrt{\left(x+1\right)^2}-\left(x+1\right)=\left|x+1\right|-\left(x+1\right)\ge0\) ; \(\forall x\)

\(\Rightarrow\) Hàm xác định trên R

1: ĐKXĐ: \(\left|x^2-4\right|+\left|x+2\right|< >0\)

\(\Leftrightarrow x\ne-2\)

2: ĐKXĐ: \(\left|x-2\right|-\left|x+1\right|< >0\)

\(\Leftrightarrow\left|x-2\right|< >\left|x+1\right|\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2< >x+1\\x-2< >-x-1\end{matrix}\right.\Leftrightarrow2x< >1\Leftrightarrow x< >\dfrac{1}{2}\)

3: ĐKXĐ: \(\left\{{}\begin{matrix}2x+11>=0\\\left\{{}\begin{matrix}3x-2< >4\\3x-2< >-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{11}{2}\\x\notin\left\{2;-\dfrac{2}{3}\right\}\end{matrix}\right.\)

 

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

11 tháng 8 2021

D={\(\forall\)x\(\in R,x\ne1,x\ne4\) }

11 tháng 8 2021

sorry lộn nha ,câu dưới sai nha

Tập xác định hàm số là :\(\left(0;+\infty\right)\) /{4}