Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x+3>0
hay x>-3
b: \(\Leftrightarrow-\left(x-2\right)^2\left(x+2\right)>0\)
=>x+2<0
hay x<-2
c: =>x+4>0
hay x>-4
d: =>-3<x<4
A=1/21+1/22+1/23+...+1/40(có 20 phân số)
A<1/20+1/20+1/20+..+1/20(có 20 phân số)
A<20/20=1(1)
A>1/40+1/40+1/40+...+1/40(có 20 phân số)
A>20/40=1/2(2)
từ (1);(2) ta kết luận 1/2<A<1(câu 1)
dễ thấy A=.1/2+1/2^2+1/2^3+...+1/2^200
A<1/1*2+1/2*3+...+1/200*201
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/200-1/201
A<1-1/201<1
A<1
KL:0<A<1
Ta thấy
\(\frac{1}{5}<1\)
\(\frac{15}{2}<8\)
=> a thuộc các số nguyên từ 1 đến 8
Vậy a \(\in\) {1;2;3;4;5;6;7;8}
ta có \(\frac{1}{5}\)=0,2
\(\frac{15}{2}\)=7,5
ta có 0,2<a<7,5
mà a là số nguyên nên a thuộc {1;2;3;4;5;6;7}
1/5=0,2;15/2=7/5
ta có 0,2<a<7,5
mà a là số nguyên suy ra a thuộc {1;2;3;4;5;6;7}
Từ giả thiết \(a+b+c=6\) ta có:
\(\left(a+b+c\right)^2=36=a^2+b^2+c^2+2\left(ab+ac+bc\right)=P+ab+ac+bc\)
Hay \(P=36-ab-bc-ca\).
Vậy GTLN của P tương đương với GTNN của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a\) là số lớn nhất trong \(a,b,c\)
Thì \(a+b+c=6\le3a\), do đó \(4\ge a\ge2\)
Lại có: \(ab+bc+ca\ge ab+ca=a\left(b+c\right)=6\left(6-a\right)\ge8\) với \(4 \ge a \ge 2\)
Do đó GTNN của \(ab+bc+ca=8\), khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)
Vậy GTLN của P là \(36-8=28\) khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)
\(\left\{\begin{matrix}a+b+c=6\left(1\right)\\0\le a,b,c\le4\left(2\right)\end{matrix}\right.\)
Từ(1)=> \(\left\{\begin{matrix}b+c=\left(6-a\right)\\b^2+c^2+bc=\left(6-a\right)^2-bc\end{matrix}\right.\)
\(P=a^2+\left(b^2+c^2+bc\right)+a\left(b+c\right)=a^2+\left[\left(6-a\right)^2-bc\right]+a\left(6-a\right)\)
\(P=\left(a^2-12a+36\right)-bc=\left(a-6\right)^2-bc\)
Từ (2)=> \(bc\ge0\) \(\Rightarrow P\le\left(a-6\right)^2\)
đạt được khi: \(b.c=0\Rightarrow\left[\begin{matrix}b=0\\c=0\end{matrix}\right.\) (3)
từ (1)&(3) \(\Rightarrow2\le a\le4\) (4)
P lớn nhất => !a-6! lớn nhất thủa mãn (4) => a=2 Từ (1)&(3)=>\(\left[\begin{matrix}b=4\\c=4\end{matrix}\right.\)
Kết luận:
Để P(a,b,c) đạt Max trong 3 số phải có 1 số =0 (cận bé của (2) ; Một số =4 (cận lớn của (2); một số thỏa mãn điều kiện (1)
Vậy: \(P_{max}\left(a,b,c\right)=P\left(4,2,0\right)=4^2+2^2+0^2+2.4+0+0=28\)
Giả sử $a\leq b\leq c\Rightarrow 2\leq c\leq 4$
$P=a^2+b^2+ab+c(a+b+c)=(a+b)^2-ab+6c\leq (6-c)^2+6c=c^2-6c+36=(c-3)^2+27$
Vì $2\leq c\leq 4$ nên $-1\leq c-3\leq 1\Rightarrow (c-3)^2\leq 1$
Vậy MaxP=28 khi a,b,c là hoán vị của 0,2,4
vì |a| là một số tự nhiên với mọi a ∈ Z nên từ |a| < 5 ta có:
=> |a| = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do
đó -5<a<5.
vì /a/ là một số tự nhiên với mọi a ∈ Z nên từ /a/ < 5 ta có:
=> /a/ = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do
đó -5<a<5.
*/a/ là giá trị tuyệt đối nha>>>
Đáp án A
a 5 21 > a 2 7 ⇔ a 5 21 > a 2 7 ⇔ 0 < a < 1