\(x\varepsilon N\), biết:

58%+\(\frac{3}{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

a) \(\left(x+\frac{1}{4}\right)^2+\frac{11}{25}=\frac{18}{25}\)

\(\Rightarrow\left(x+\frac{1}{4}\right)^2=\frac{7}{25}\)

\(\Rightarrow\) Không có x

23 tháng 6 2020

\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)< x< \frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)

\(\frac{4}{3}.\left(\frac{-1}{3}\right)< x< \frac{2}{3}.\left(\frac{7}{12}\right)\)

\(\frac{-4}{9}< x< \frac{7}{18}\)

\(\frac{-8}{18}< x< \frac{7}{18}\)

mà -8<x<7

⇒ x ϵ \(\left\{-7;-6;-5;-4;....;5;6\right\}\)

15 tháng 8 2020

a,ĐK : x \(\ne\)3/7 

 \(\frac{24}{7x-3}=-\frac{4}{25}\Leftrightarrow600=-28x+12\Leftrightarrow-28x=588\Leftrightarrow x=-21\)

b, ĐK : x;y  \(\ne\)6

Xét : \(\frac{4}{x-6}=-\frac{12}{18}\Leftrightarrow72=-12x+72\Leftrightarrow x=0\)

Xét : \(\frac{y}{24}=-\frac{12}{18}\Leftrightarrow18y=-288\Leftrightarrow y=-16\)

\(\frac{24}{7.x-3}=-\frac{4}{25}\)

24.25=7.x-3.-4

600=7.x-3.-4

7.x-3.-4=600

7.x-3=600:-4

7.x-3=-150

7.x=-150+3

7.x=-147

x=-147:7

x=-21

vậy x=-21

18 tháng 4 2020

Ta có:

a)  \(\Leftrightarrow3\left(x+2\right)=-4\left(x-5\right)\)

     \(\Leftrightarrow3x+6=-4x+20\)

    \(\Leftrightarrow7x=14\Leftrightarrow x=2\)

18 tháng 4 2020

b)Ta có:

   \(-\frac{x}{4}=-\frac{9}{x}\)

\(\Leftrightarrow-x^2=-36\)

\(\Leftrightarrow x^2=36\)

\(\Leftrightarrow x=\pm6\)

b) 52-\(|\)x\(|\)=-80

         \(|\)x\(|\)=52-(-80)

         \(|\)x\(|\)=52+80

         \(|\)x\(|\)=132

    Vậy x=-132

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...