Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+\frac{1}{4}\right)^2+\frac{11}{25}=\frac{18}{25}\)
\(\Rightarrow\left(x+\frac{1}{4}\right)^2=\frac{7}{25}\)
\(\Rightarrow\) Không có x
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)< x< \frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)
⇒ \(\frac{4}{3}.\left(\frac{-1}{3}\right)< x< \frac{2}{3}.\left(\frac{7}{12}\right)\)
⇒ \(\frac{-4}{9}< x< \frac{7}{18}\)
⇒ \(\frac{-8}{18}< x< \frac{7}{18}\)
mà -8<x<7
⇒ x ϵ \(\left\{-7;-6;-5;-4;....;5;6\right\}\)
a,ĐK : x \(\ne\)3/7
\(\frac{24}{7x-3}=-\frac{4}{25}\Leftrightarrow600=-28x+12\Leftrightarrow-28x=588\Leftrightarrow x=-21\)
b, ĐK : x;y \(\ne\)6
Xét : \(\frac{4}{x-6}=-\frac{12}{18}\Leftrightarrow72=-12x+72\Leftrightarrow x=0\)
Xét : \(\frac{y}{24}=-\frac{12}{18}\Leftrightarrow18y=-288\Leftrightarrow y=-16\)
\(\frac{24}{7.x-3}=-\frac{4}{25}\)
24.25=7.x-3.-4
600=7.x-3.-4
7.x-3.-4=600
7.x-3=600:-4
7.x-3=-150
7.x=-150+3
7.x=-147
x=-147:7
x=-21
vậy x=-21
Ta có:
a) \(\Leftrightarrow3\left(x+2\right)=-4\left(x-5\right)\)
\(\Leftrightarrow3x+6=-4x+20\)
\(\Leftrightarrow7x=14\Leftrightarrow x=2\)
b) 52-\(|\)x\(|\)=-80
\(|\)x\(|\)=52-(-80)
\(|\)x\(|\)=52+80
\(|\)x\(|\)=132
Vậy x=-132
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...