Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
Đặt \(x^2=t\left(t>0\right)\)phương trinh \(x^4+\left(1-m\right)x^2+2m-2=0\left(1\right)\)trở thành \(t^2+\left(1-m\right)t+2m+2=0\left(2\right)\)
Để (1) có 4 nghiệm phân biệt thì phương trình (2) phải có 2 nghiệm phân biệt tức
\(\Delta>0\Leftrightarrow\left(1-m\right)^2-4\left(2m-2\right)>0\)
\(m^2-10m+9>0\Leftrightarrow\left(m-1\right)\left(m-9\right)>0\Leftrightarrow\orbr{\begin{cases}m>9\\m< 1\end{cases}}\)
Câu b:
phương trình (2) có hai nghiệm phân biệt \(t_1,t_2\)tương ứng phương trình (1) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\)thỏa mãn \(\hept{\begin{cases}t_1=-x_1=x_3\\t_2=-x_2=x_4\end{cases}}\)(theo tính chất đối xứng nghiệm của hàm trùng phương bậc 4)
theo viet ta có :\(\hept{\begin{cases}t_1+t_2=1-m\\t_1t_2=2m-2\end{cases}}\)
Xét \(\frac{x_1x_2x_3}{2x_4}+\frac{x_1x_2x_4}{2x_3}+\frac{x_1x_3x_4}{2x_2}+\frac{x_2x_3x_4}{2x_1}=2013\)
\(VT=\frac{\left(x_1x_2x_3\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_1x_2x_4\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_1x_3x_4\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_4x_2x_3\right)^2}{2x_1x_2x_3x_4}\)
\(=\frac{\left(x_1x_2\right)^2\left(x^2_3+x^2_4\right)}{2x_1x_2x_3x_4}+\frac{\left(x_4x_3\right)^2\left(x_1^2+x_2^2\right)}{2x_1x_2x_3x_4}\)
thay biến x bằng biến t ta có
\(VT=\frac{\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}+\frac{\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}=\frac{2\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}\)
\(=\left(t_1t_2\right)\left(t_1^2+t^2_2\right)=\left(t_1^2+t^2_2-2t_1t_2\right)t_1t_2\)
thế m theo viet vào ta có :
\(\left(2m-2\right)\left(\left(1-m\right)^2-2\left(2m-2\right)\right)=2013\)
\(\Leftrightarrow2m^3-8m^2+17m-2023=0\)
Đến đây giải dễ rùi bạn gải nốt tìm m nhé
x2 + 2. ( m- 1 ) .x - 4 = 0
\(\Delta'=\left(m-1\right)^2+4>0\)
=> Với \(\forall\)m thì phương trình đều có 2 nghiệm phân biệt
x1 = - ( m - 1 ) + \(\sqrt{\left(m-1\right)^2+4}\)
\(x_2=-\left(m-1\right)-\sqrt{\left(m-1\right)^2+4}\)
Để x1 và x2 là 1 số nguyên thì m phải là số nguyên và \(\sqrt{\left(m-1\right)^2+4}\)là số nguyên .
Có \(\left(m-1\right)^2\ge0\)
\(\Rightarrow\left(m-1\right)^2+4\ge4\)
\(\Rightarrow\sqrt{\left(m-1\right)^2+4}\ge2\)
\(\Rightarrow\left(m-1\right)^2+4=4\Rightarrow m=1\)
Vậy m = 1
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}<0\text{ (loại) hoặc }\sqrt{k}\ge14+4\sqrt{17}\)
\(\Leftrightarrow k\ge\left(14+4\sqrt{17}\right)^2\approx929,78\Rightarrow k\ge930\)
Vậy \(m=\frac{6+\sqrt{k}+\sqrt{k-28\sqrt{k}-76}}{8}\text{ hoặc }m=\frac{6+\sqrt{k}-\sqrt{k-28\sqrt{k}-76}}{8}\) với k là một số nguyên lớn hợn hoặc bằng 930.
để pt có nghiệm nguyên <=> delta là chính phương. Tự giải ra nhé ^_^ Dạo này mình bận quá