Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước ( n+3 ; 2n+5)=d (d ϵ N*)
⇒ n+3 ⋮ d và 2n+5 ⋮ d
⇒2n+6 ⋮ d và 2n+5 ⋮ d
⇒ (2n+6) - (2n+5) ⋮ d
⇒ 1 ⋮ d
Mà d ϵ N*
⇒ d = 1
Ta có: Ư(1)={1}{1}
Vậy ƯC (n+3;2n+5) = {1}
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
ta có:\(\frac{2n+7}{n+1}\)=\(\frac{2\left(n+1\right)+6}{n+1}\)=\(2+\frac{6}{n+1}\)
Để 2+\(\frac{6}{n+1}\)thuộc Z
=>n+1 thuộc Ư(6)
=>n+1 thuộc {1;-1;2;-2;3;-3;6;-6}
n thuộc {0;-2;1;-3;2;-4;5;-7}
vậy n thuộc {0;-2;1;-3;2;-4;5;-7}
Ta có \(2n+7⋮n+1\Rightarrow2\left(n+1\right)+5⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Thử từng ước của 5 rồi tìm n thỏa mãn
Mình chỉ làm được câu a thôi,bạn hãy thử lại nhé
a.(2n+5) chia hết cho (n-1)
Ta có :2n+5=2n-1+6
Vì 2n-1 chia hết cho n-1 =>2n-1+6 chia hết cho n-1 khi 6 chia hết cho n-1
=>n-1 thuộc Ư(6)
Mà Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-1 thuộc{-1;1;-2;2;-3;3;-6;6}
Ta có bảng giá trị sau :
n-1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | 0 | 2 | -1 | 3 | -2 | 4 | -5 | 7 |
Vậy n thuộc {0;2;-1;3;-2;4;-5;7}
HÌNH NHƯ BỊ SAI KẾT QUẢ NHƯNG MÌNH CHẮC CHẮN CÁCH LÀM
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
a) Ta có: \(n+15⋮n-3\)
\(\Rightarrow\left(n-3\right)+18⋮n-3\)
\(\Rightarrow18⋮n-3\)(vì \(n-3⋮n-3\))
\(\Rightarrow n-3\inƯ\left(18\right)\)
\(\Rightarrow n-3\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{4;5;6;9;12;21\right\}\)
Do n > 5 nên:
\(\Rightarrow x\in\left\{6;9;12;21\right\}\)
Ta có (2n+5)⋮(n+1)
(2n+2+3)⋮(n+1)
(2n+2+2+1)⋮(n+1)
(2(n+1)+2)⋮(n+1)
Vì 2(n+1)⋮(n+1)
Nên 2⋮(n+1)
Suy ra n+1 ϵ Ư(2)=(1;20
Trường hợp 1:n+1=1
n =1-1
n =0
Trường hợp 2:n+1=2
n =2-1
n =1
Vậy x ϵ (0;1)