Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8n+19 chia hết 4n+1
,4n+1 chia hết 4n+1=>2(4n+1)=8n+2 chia hết 4n+1
=>(8n+19-8n-2) chia hết 4n+1=>17 chia hết 4n+1=>4n+1 E Ư(17)=1;17;-1;-17 và n E N
=>n=0;4
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
\(n-5⋮n-3\)
\(n-3+2⋮n-3\)
Vì \(n-3⋮n-3\)
\(2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng
n-3 | -1 | 1 | -2 | 2 |
n | 2 | 4 | 1 | 5 |
tự lm tiếp phần sau ... hc tốt
a ) n - 13 chia hết cho n + 9
n + 9 - 22 chia hết cho n + 9
( n + 9 ) - 22 chia hết cho n + 9
n + 9 chia hết cho n + 9 với mọi n . Vậy 22 chia hết cho n + 9
=> n + 9 thuộc Ư(22 )
=> n + 9 thuộc { 1 ; 2 ; 11 ; 22 }
Với n + 9 = 1
n = 1 - 9 ( loại )
Với n + 9 = 2
n = 2 - 9 ( loại )
Với n + 9 =11
n = 11 - 9
n = 2
Với n + 9 = 22
n = 22 - 9
n = 13
Vậy n { 2 ; 13 }
a . Ta có : \(n+10⋮n+1\)
\(n+1+9⋮n+1\)
mà\(n+1⋮n+1\)
\(\Rightarrow9⋮n+1\)
\(\Rightarrow n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\)
Ta có bảng sau :
n +1 | 1 | 3 | 9 |
n | 0 | 2 | 8 |
để n+10 chia hết n+1 thì
9chia hết cho n+1
=>n+1 \(\inƯ\left(9\right)=\left\{1;3;9\right\}\)
ta có bảng sau
n+1 | 1 | 3 | 9 |
n | 2 | 4 | 10 |
tm | tm | tm |
vậy...
a) P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
*kí hiệu thuộc vs ước bạn tự viết nha*
b) mk lười làm nên bạn tham khảo ở link này nha ^^: https://olm.vn/hoi-dap/question/12009.html
a, ( 4n - 5 ) chia het cho ( 2n - 1 )
=> ( n + n + n + n - 1 - 1 - 1-1 -1) chia het cho ( 2n - 1 )
=>. ( 2n + 2n - 1 - 1 - 3 ) chia het cho ( 2n -1 )
=> [ ( 2n - 1 ) + ( 2n - 1 ) - 3 ] chia het cho (2n-1)
Vi ( 2n-1) chia het cho ( 2n - 1 )
=> 3 chia het cho ( 2n - 1 )
=> 2n - 1 thuoc U(3)
=> 2n - 1 thuoc { 1; 3}
=> 2n thuoc { 0 ; 2 }
=> n thuoc { 0 ; 1 }
Vay n thuoc { 0; 2 }
Phan b, ban lm tuong tu nha !
Tham khao nha !
1)3n-1⋮n-3
=>3n-1-8+8⋮n-3
=>3n-9+8⋮n-3
=>3(n-3)+8⋮n-3
=>8⋮n-3(do 3(n-3)⋮n-3)
=>n-3∈Ư(8)=>n-3∈{1,2,4,8}
+)n-3=1=>n=1+3=4
+)n-3=2=>n=2+3=5
+)n-3=4=>n=4+3=7
+)n-3=8=>n=8+3=11
Vậyn∈{4,5,7,11}
a, ta có 3n-1=3(n-3)+8 chia hết cho n-3 khi n-3 là ước của 8 hay \(n-3\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\Rightarrow n\in\left\{1,2,4,5,7,11\right\}\)
b, ta có 4n+1=2(2n-1)+3 chia hết cho 2n-1 khi 2n-1 là ước của 3 hay \(2n-1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{0,1,2\right\}\)
c, ta có với n=0 thì thỏa mãn
với n khác 0 thì 2 không chia hết cho 2n+1 ta được 10n+6 chia hết cho 2n+1. ta có 10n+6=5(2n+1)+3 chia hết cho 2n+1 khi 2n+1 là ước của 3 hay \(2n+1\in\left\{\pm3,\pm1\right\}\Rightarrow n\in\left\{0,1\right\}\)