Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AD và BC là I. Theo tính chất đường kính dây cung, ta có I là trung điểm AD. Từ đó dễ thấy tam giác ABD cân tại B.
Ta sẽ chứng minh AH luôn tiếp xúc với đường tròn (O; OA) tại A hay \(AH\perp OA\)
Xét tứ giác EHBA có \(\widehat{EHB}+\widehat{EAB}=90^o+90^o=180^o\)
Vậy nên EHBA là tứ giác nội tiếp
Suy ra \(\widehat{HEB}=\widehat{HAB}\)
Do \(EH\perp HC,AD\perp HC\Rightarrow\)EH // AD \(\Rightarrow\widehat{HEB}=\widehat{BDA}\) (Hai góc so le trong)
Tứ giác ABDC nội tiếp nên \(\widehat{BDA}=\widehat{BCA}\) (Hai góc nội tiếp cùng chắn cung AB)
Mà \(\widehat{BCA}=\widehat{OAC}\)
Vậy nên \(\widehat{HAB}=\widehat{OAC}\)
Ta có \(\widehat{HAO}=\widehat{HAB}+\widehat{BAO}=\widehat{OAC}+\widehat{BAO}=\widehat{BAC}=90^o\)
Vậy HA vuông góc AO tại A hay HA luôn tiếp xúc với đường tròn \(\left(O;OA\right)\)
Mà (O;OA) là cố định nên HA luôn tiếp xúc với một đường tròn cố định.
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét (C) có
CA là bán kính
AB vuông góc CA tại A
Do đó: AB là tiếp tuyến của (C)
Xét (B) có
BA là bán kính
CA vuông góc BA tại A
Do đó: CA là tiếp tuyến của (B)
b: M ở đâu vậy bạn?
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại r` cộng vào nhé
c245vc