Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
Ta có \(xyz=3^{2010}\)
Do 3 là số nguyên tố ,x,y,z là số tự nhiên
=> x,y,z có dạng \(3^n\)
Đặt \(x=3^a;y=3^b;z=3^c\)
=> \(\hept{\begin{cases}3^{a+b+c}=3^{2010}\\3^a\le3^b\le3^c< 3^a+3^b\end{cases}}\)
=>\(\hept{\begin{cases}a+b+c=2010\\3^a\le3^b\le3^c< 3^a+3^b\left(2\right)\end{cases}}\)
Từ (2)
\(3^b\le3^c\)=> \(b\le c\)(*)
\(3^c< 3^b+3^a< 2.3^b< 3.3^b=3^{b+1}\)=> \(c< b+1\)(**)
Từ (*),(**)
=> \(b=c\)
Khi đó
\(a+2b=2010\)Do \(b\ge a\)=> \(a\le670\)
=> a chẵn
Đặt \(a=2k\)(k là số tự nhiên)=> \(k\le335\)
=> \(b=1005-k\)
Vậy \(x=3^{2k},y=z=3^{1005-k}\)với \(k\in N;k\le335\)
\(\)
\(\frac{-3}{6}=\frac{x}{-2}=\frac{-9}{y}\)
Ta có \(\frac{-3}{6}=\frac{x}{-2}\Leftrightarrow-3.\left(-2\right)=6.x\Leftrightarrow6=6x\Leftrightarrow x=1\left(TM\right)\)
Ta có \(\frac{1}{-2}=\frac{-9}{y}\Leftrightarrow y=-2.\left(-9\right)\Leftrightarrow y=18\left(TM\right)\)
Vậy \(\hept{\begin{cases}x=1\\y=18\end{cases}}\)
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
a) \(\frac{x}{3}=\frac{5}{y}\)
\(\Rightarrow\) xy = 3 . 5
=> xy = 15
Do x , y nguyên nên ta có các cặp số nguyên ( x ; y) thỏa mãn là ( 1; 15 ) ; ( 3 ; 5 ) ;( 5 ; 3 ) ; ( 15 ; 1)
Vậy các cặp số nguyên ( x ; y) thỏa mãn là ( 1; 15 ) ; ( 3 ; 5 ) ;( 5 ; 3 ) ; ( 15 ; 1)
b, \(\frac{x}{y}=\frac{28}{35}\)
Câu b t k chắc __________ Bạn tham khảo link này
https://h.vn/hoi-dap/question/179382.html
@@ Học tốt
## Chiyuki Fujito
Nhận xét : Ta thấy ngay x,y,z khác nhau và x từ 0 đến 9 ; y từ 0 đến 9 , z từ 0 đến 9, cho nên : \(0< x+y+z< 27(1)\)
\(\frac{1}{x+y+z}=\frac{\overline{xyz}}{1000}\Leftrightarrow\frac{1}{x+y+z}=0,\overline{xyz}\Rightarrow1=(x+y+z)\cdot0,\overline{xyz}\)
Nhân cả hai vế với 1000,ta được : \(1000=(x+y+z)\cdot\overline{xyz}\)
Vì \((1)\)nên \(x+y+z\)chỉ có thể nhận các giá trị 1,2,4,5,8,10,20,25
Thử : \(\frac{1000}{1}=1000;\frac{1000}{2}=500;\frac{1000}{4}=250;\frac{1000}{5}=200\)
\(\frac{1000}{8}=125;\frac{1000}{10}=100;\frac{1000}{20}=50;\frac{1000}{25}=40\)
Chỉ có trường hợp \(\frac{1000}{8}=125\)đúng vì 8 = 1 + 2 + 5
Vậy các chữ số cần tìm là : x = 1 , y = 2 , z = 5
Thử lại : \(\frac{1}{8}=0,125\)