K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Leftrightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

Đặt : \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=4k\\z=6k\end{matrix}\right.\)

\(2x^2+2y^2-z^2=1\)

\(\Leftrightarrow2.\left(2k\right)^2+2.\left(4k\right)^2-\left(6k\right)^2=1\)

\(\Leftrightarrow8k^2+32k^2-36k^2=1\)

\(\Leftrightarrow4k^2=1\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\)

+) \(k=\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2.\dfrac{1}{2}=1\\y=4.\dfrac{1}{2}=2\\z=6.\dfrac{1}{2}=3\end{matrix}\right.\)

+) \(k=-\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}.2=-1\\y=-\dfrac{1}{2}.4=-2\\z=-\dfrac{1}{2}.6=-3\end{matrix}\right.\)

14 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

14 tháng 10 2021

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)

18 tháng 2 2019

Bạn ơi xem lại đề bài nha, mình nghĩ đề bài đúng phải là \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) chứ nhỉ.

19 tháng 2 2019

Đề đúng mà bạn !

16 tháng 3 2017

hướng dẫn giải

B1 : bn chia nó ra làm hai bước tính trong một phép .

vd : 3x/8 = 3y/64

tương tự như vậy

còn cách tính làm sao thì dễ rồi nha

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

\(\Leftrightarrow\dfrac{x}{8}=\dfrac{y}{64}=\dfrac{z}{216}\)

đặt x/8=y/64=z/216=k

=>x=8k; y=64k; z=216k

\(2x^2+2y^2-z^2=1\)

\(\Leftrightarrow128k^2+2\cdot64^2\cdot k^2-\left(216k\right)^2=1\)

\(\Leftrightarrow k^2=\dfrac{1}{-38336}\)(vô lý)

13 tháng 10 2018

Và ???

13 tháng 10 2018

đề bài là j vậy bn ??