Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
d) \(x.\left(y+2\right)-y=15\)
\(\Rightarrow x.\left(y+2\right)=15+y\)
\(\Rightarrow x=\frac{y+15}{y+2}=\frac{y+2+13}{y+2}=1+\frac{13}{y+2}\)
y + 2 là ước nguyên của 13
\(y+2=1\Rightarrow y=-1\Rightarrow x=14\)
\(y+2=-1\Rightarrow y=-3\Rightarrow x=-12\)
\(y+2=13\Rightarrow y=11\Rightarrow x=2\)
\(y+2=-13\Rightarrow y=-15\Rightarrow x=0\)
Ai thấy đúng thì ủng hộ, mink chỉ làm được vậy thuu
\(\frac{-2}{x}=\frac{y}{3}\)
=> x.y=-6
=> Ta có các bộ (x,y) là (-1;6),(1;-6),(-2;3),(2;-3),(6;-1),(-6;1),(3;-2),(-3;2)
\(\frac{13}{x}=\frac{y}{1}\)
=>x.y=13
Ta có các bộ số (x,y) là (-1;-13);(1;13);(-13;-1),(13;1)
\(1)\)
Để \(\frac{13}{a-1}\) là số nguyên thì \(13⋮\left(a-1\right)\)\(\Rightarrow\)\(\left(a-1\right)\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(a-1\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(a\) | \(2\) | \(0\) | \(14\) | \(-12\) |
Vậy \(a\in\left\{2;0;14;-12\right\}\)
\(2)\)
Ta có :
\(\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
Do đó :
\(\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x=10 và y=6