Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\sqrt x - 16 = 0\\\sqrt x = 16\\x = {16^2}\\x = 256\end{array}\)
Vậy x = 256
\(\begin{array}{l}b)2\sqrt x = 1,5\\\sqrt x = 1,5:2\\\sqrt x = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)
Vậy x = 0,5625
\(\begin{array}{l}c)\sqrt {x + 4} - 0,6 = 2,4\\\sqrt {x + 4} = 2,4 + 0,6\\\sqrt {x + 4} = 3\\x + 4 = 9\\x = 5\end{array}\)
Vậy x = 5
\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) = - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) = - 0,05.{x^3}\end{array}\)
\(\begin{array}{l}a)x + 0,25 = \frac{1}{2}\\x = \frac{1}{2} - 0,25\\x = \frac{1}{2} - \frac{1}{4}\\x = \frac{2}{4} - \frac{1}{4}\\x = \frac{1}{4}\end{array}\)
Vậy \(x = \frac{1}{4}\)
\(\begin{array}{l}b)x - \left( { - \frac{5}{7}} \right) = \frac{9}{{14}}\\x = \frac{9}{{14}} + \left( { - \frac{5}{7}} \right)\\x = \frac{9}{{14}} + \left( { - \frac{{10}}{{14}}} \right)\\x = \frac{{ - 1}}{{14}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{14}}\)
\(\begin{array}{l}a)x - \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right) = \dfrac{9}{{20}}\\x = \dfrac{9}{{20}} + \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right)\\x = \dfrac{9}{{20}} + \dfrac{{25}}{{20}} - \dfrac{{28}}{{20}}\\x = \dfrac{{6}}{{20}}\\x = \dfrac{{ 3}}{{10}}\end{array}\)
Vậy \(x = \dfrac{{ 3}}{{10}}\)
\(\begin{array}{*{20}{l}}{b)9 - x = \dfrac{8}{7} - \left( { - \dfrac{7}{8}} \right)}\\\begin{array}{l}9 - x = \dfrac{8}{7} + \dfrac{7}{8}\\9 - x = \dfrac{{64}}{{56}} + \dfrac{{49}}{{56}}\\9 - x = \dfrac{{113}}{{56}}\end{array}\\{x = 9 - \dfrac{{113}}{{56}}}\\{x = \dfrac{{504}}{{56}} - \dfrac{{113}}{{56}}}\\{x = \dfrac{{391}}{{56}}}\end{array}\)
Vậy \(x = \dfrac{{391}}{{56}}\)
\(\begin{array}{l}a)\sqrt {1600} = 40;\\b)\sqrt {0,16} = 0,4;\\c)\sqrt {2\frac{1}{4}} = \sqrt {\frac{9}{4}} = \frac{3}{2}\end{array}\)
\(\text{a)}\sqrt{1600}=40\)
\(\text{b)}\sqrt{0,16}=0,4\)
\(\text{c)}\sqrt{2\dfrac{1}{4}}=\sqrt{\dfrac{9}{4}}=\dfrac{3}{2}\)
\(\begin{array}{l}a)2x + \frac{1}{2} = \frac{7}{9}\\2x = \frac{7}{9} - \frac{1}{2}\\2x = \frac{{14}}{{18}} - \frac{9}{{18}}\\2x = \frac{5}{{18}}\\x = \frac{5}{{18}}:2\\x = \frac{5}{{18}}.\frac{1}{2}\\x = \frac{5}{{36}}\end{array}\)
Vậy \(x = \frac{5}{{36}}\)
\(\begin{array}{l}b)\frac{3}{4} - 6x = \frac{7}{{13}}\\ 6x = \frac{3}{{4}} - \frac{7}{13}\\ 6x = \frac{{39}}{{52}} - \frac{{28}}{{52}}\\ 6x = \frac{{11}}{{52}}\\x = \frac{{11}}{{52}}:6\\x = \frac{{11}}{{52}}.\frac{{1}}{6}\\x = \frac{{11}}{{312}}\end{array}\)
Vậy \(x = \frac{{11}}{{312}}\)
\(\begin{array}{l}a)2.\sqrt 6 .( - \sqrt 6 )\\ = - 2.\sqrt 6 .\sqrt 6 \\ = - 2.{(\sqrt 6 )^2}\\ = - 2.6\\ = - 12\\b)\sqrt {1,44} - 2.{(\sqrt {0,6} )^2}\\ = 1,2 - 2.0,6\\ = 1,2 - 1,2\\ = 0\\c)0,1.{(\sqrt 7 )^2} + \sqrt {1,69} \\ = 0,1.7 + 1,3 \\= 0,7 + 1,3 \\= 2\\d)( - 0,1).{(\sqrt {120} )^2} - \frac{1}{4}.{(\sqrt {20} )^2} \\= ( - 0,1).120 - \frac{1}{4}.20\\ = - 12 - 5\\ = - (12 + 5)\\ = - 17\end{array}\)
a: \(=-2\sqrt{6}\cdot\sqrt{6}=-2\cdot\sqrt{6\cdot6}=-2\cdot6=-12\)
b: \(=1.2-2\cdot0.6=1.2-1.2=0\)
c: \(=0.1\cdot7+1.3=0.7+1.3=2\)
d: \(=-0.1\cdot120-\dfrac{1}{4}\cdot20=-12-5=-17\)
\(\begin{array}{l}a)x + 7,25 = 15,75\\x = 15,75 - 7,25\\x = 8,5\end{array}\)
Vậy x = 8,5
\(\begin{array}{l}b)\left( { - \frac{1}{3}} \right) - x = \frac{{17}}{6}\\\left( { - \frac{1}{3}} \right) - \frac{{17}}{6} = x\\\frac{{ - 2}}{6} - \frac{{17}}{6} = x\\\frac{{ - 19}}{6} = x\\x = \frac{{ - 19}}{6}\end{array}\)
Vậy \(x = \frac{{ - 19}}{6}\)
Chú ý: A = B và B = A là tương đương nhau
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\ = \frac{9}{{10}} - \frac{6}{5} + \frac{7}{4}\\ = \frac{{18}}{{20}} - \frac{{24}}{{20}} + \frac{{35}}{{20}}\\ = \frac{{18 - 24 + 35}}{{20}}\\ = \frac{{29}}{{20}}\\b)6,5 + [0,75 - (8,25 - 1,75)]\\ = 6,5 + (0,75 - 8,25 + 1,75)\\ = 6,5 + 0,75 - 8,25 + 1,75\\ = 7,25 - 8,25 + 1,75\\ = ( - 1) + 1,75\\ = 0,75\end{array}\)
\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}}\\ \Rightarrow x.0,75 = ( - 3).7\\ \Rightarrow x = \frac{{( - 3).7}}{{0,75}} = - 28\end{array}\)
Vậy x = 28
\(\begin{array}{l}b) - 0,52:x = \sqrt {1,96} :( - 1,5)\\ - 0,52:x = 1,4:( - 1,5)\\ x = \dfrac{(-0,52).(-1,5)}{1,4}\\x = \frac{39}{{70}}\end{array}\)
Vậy x = \(\frac{39}{{70}}\)
\(\begin{array}{l}c)x:\sqrt 5 = \sqrt 5 :x\\ \Leftrightarrow \frac{x}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{x}\\ \Rightarrow x.x = \sqrt 5 .\sqrt 5 \\ \Leftrightarrow {x^2} = 5\\ \Leftrightarrow \left[ {_{x = - \sqrt 5 }^{x = \sqrt 5 }} \right.\end{array}\)
Vậy x \( \in \{ \sqrt 5 ; - \sqrt 5 \} \)
Chú ý:
Nếu \({x^2} = a(a > 0)\) thì x = \(\sqrt a \) hoặc x = -\(\sqrt a \)
a: \(\dfrac{x}{-3}=\dfrac{7}{0.75}=\dfrac{28}{3}\)
=>\(x=\dfrac{28\left(-3\right)}{3}=-28\)
b: \(-\dfrac{0.52}{x}=\dfrac{\sqrt{1.96}}{-1.5}=\dfrac{1.4}{-1.5}\)
=>\(x=0.52\cdot\dfrac{1.5}{1.4}=\dfrac{39}{70}\)
c: \(\dfrac{x}{\sqrt{5}}=\dfrac{\sqrt{5}}{x}\)
=>\(x^2=5\)
=>\(x=\pm\sqrt{5}\)