K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

\(\left\{{}\begin{matrix}u_2+u_3-u_6=7\\u_4+u_8=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d-u_1-5d=7\\u_1+3d+u_1+7d=-14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=3\\d=-2\end{matrix}\right.\)

`=> u_n = 3-2(n-1) = -2n+5`

24 tháng 10 2018

30 tháng 12 2017

4 tháng 2 2020

a/ \(-12\left(x-5\right)+7\left(3-x\right)=5\)

\(< =>-12x+60+21-7x=5\)

\(< =>-19x+81=5\)

\(< =>-19x=-76\)

\(< =>x=\frac{76}{19}\)

b/ 30(x+2)-6(x-5)-24x=100

<=>30x + 60 - 6x + 30 - 24x =100

<=> 90=100( vô lý)

c/ \(\left(x-1\right)\left(x^2+1\right)=0\)

\(< =>\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}< =>\hept{\begin{cases}x=1\\x^2=-1\left(voly\right)\end{cases}}\)

d/ làm rồi mà

4 tháng 2 2020

a. \(-12.\left(x-5\right)+7.\left(3-x\right)=5\)

             \(-12x+60+21-7x=5\)

                                    \(-19x+81=5\)

                                                \(-19x=-76\)

                                                         \(x=4\)

b. \(30.\left(x+2\right)-6.\left(x-5\right)-24x=100\)

            \(30x+60-6x+30-24x=100\)

\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)

                                                                 \(90=100\)(vô lí)

                                                              \(\Rightarrow x=\varnothing\)

c. \(\left(x-1\right)\left(x^2+1\right)=0\)

 \(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\left(loại\right)\end{cases}}}\)

 \(\Rightarrow x=1\)

Câu d) chính là câu a) :D

8 tháng 10 2019

AH
Akai Haruma
Giáo viên
15 tháng 5 2022

Lời giải:
Đặt $\sqrt{x^2+1}+x=a$ thì:
$f(a)=e^a-e^{\frac{1}{a}}$

$f'(a)=e^a+\frac{1}{a^2}.e^{\frac{1}{a}}>0$ với mọi $a$

Do đó hàm $f(a)$ là hàm đồng biến hay $f(x)$ là hàm đồng biến trên R
$\Rightarrow f(x)> f(0)=0$ với mọi $x>0$

$\Rightarrow f(\frac{12}{m+1})>0$ với $m$ nguyên dương 

Do đó để $f(m-7)+f(\frac{12}{m+1})<0$ thì $f(m-7)<0$

$\Rightarrow m-7<0$

Mặt khác, dễ thấy: $f(x)+f(-x)=0$. Bây h xét:

$m=1$ thì $f(m-7)+f(\frac{12}{m+1})=f(-6)+f(6)=0$ (loại)

$m=2$ thì $f(m-7)+f(\frac{12}{m+1})=f(-5)+f(4)=f(4)-f(5)<0$ (chọn)

$m=3$ thì $f(m-7)+f(\frac{12}{m+1})=f(-4)+f(3)=f(3)-f(4)<0$ (chọn)

$m=4$ thì $f(m-7)+f(\frac{12}{m+1})=f(-3)+f(2,4)=f(2,4)-f(3)<0$ (chọn) 

$m=5$ thì $f(m-7)+f(\frac{12}{m+1})=f(-2)+f(2)=0$ (loại)

$m=6$ thì $f(m-7)+f(\frac{12}{m+1})=f(-1)+f(12/7)>f(-1)+f(1)=0$ (loại)

Vậy có 3 số tm

15 tháng 5 2022

sao ra được \(e^{\dfrac{1}{a}}\) vậy ạ? Em không hiểu dòng này "Mặt khác, dễ thấy: f(x)+f(−x)=0f(x)+f(−x)=0."

6 tháng 3 2017

Đáp án A