Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2xy+y=7
=>(2x+1)*y=7
=>(2x+1;y) thuộc {(1;7); (7;1); (-1;-7); (-7;-1)}
=>(x,y) thuộc {(0;7); (3;1); (-1;-7); (-4;-1)}
b: =>(2x+1)^2+(y+1)^2=179-169=10
=>((2x+1)^2;(y+1)^2) thuộc {(1;9); (9;1)}
TH1: (2x+1)^2=1 và (y+1)^2=9
=>\(\left\{{}\begin{matrix}2x+1\in\left\{1;-1\right\}\\y+1\in\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-1\right\}\\y\in\left\{2;-4\right\}\end{matrix}\right.\)
TH2: (2x+1)^2=9 và (y+1)^2=1
=>\(\left\{{}\begin{matrix}2x+1\in\left\{3;-3\right\}\\y+1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{1;-2\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
Dễ thấy 2x+3 là số lẻ và là ước lớn hơn hoặc bằng 3 của 36( vì x là số tự nhiên) =>2 x+3\(\in\)(3;9) => x\(\in\)(0;3) rồi thay vào tìm y
2x+3 và y+1 là cặp ước của 36
Để x \(\in N\)=>2x là số chẵn=>2x+3 là số lẻ
36=1.36=2.18=3.12=4.9=6.6=-1.(-36)=-2.(-18)=-3.(-12)=-4.(-9)=-6.(-6)
Ta có bảng giá trị: với 2x+3 là số lẻ.
2x+3 | 1 | 3 | 9 | -1 | -3 | -9 |
2x | -2 | 0 | 6 | -4 | -6 | -12 |
x | -1 | 0 | 3 | -2 | -3 | -6 |
y+1 | 36 | 12 | 4 | -36 | -12 | -4 |
y | 35 | 11 | 3 | -37 | -13 | -5 |
Vậy(x;y)\(\in\) {(-1;35);(0;11);(3;3);(-2;-37);(-3;-13);(-6;-5)}
a: =>12x-64=32
=>12x=96
=>x=8
b: =>x-1=5
=>x=6
c: =>2^x*3=96
=>2^x=32
=>x=5
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
a)(x-2)(y+1)=17
Ta xét bảng sau:
b)(2x-1)(y+3)=36
Ta xét bảng sau: