Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2n + 1)(y - 3) = 10 = 1.10 = 10.1 = 2.5 = 5.2
2n + 1 = 1 => n = 0 ; y - 3 = 10 => y = 13
2n + 1 = 10 => n = 4,5 (loại)
2n + 1 = 2 => n = 0,5 (Loại)
2n + 1 = 5 => n =2 ; y - 3 = 2 => y = 5
Vậy các cặp (x;y) là (0;13) ; (2;5)
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
+) \(\left(x^2+1\right)\left(x+1\right)=4^y\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=2^{2y}\)
+) Do \(x,y\inℕ\)nên ta có \(x^2+1=2^m\)và \(x+1=2^n\)với \(m+n=2y;m,n\inℕ\)
+) Lúc đó ta có: \(\orbr{\begin{cases}x^2+1⋮x+1\\x+1⋮x^2+1\end{cases}}\)
TH1: \(x^2+1⋮x+1\Leftrightarrow\left(x+1\right)^2-2\left(x+1\right)+2⋮x+1\)
\(\Leftrightarrow2⋮x+1\Leftrightarrow x\in\left\{0;1\right\}\)
TH2: \(x+1⋮x^2+1\Leftrightarrow x^2-1⋮x^2+1\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x\in\left\{0;1\right\}\)
* Nếu x = 0 thì \(4^y=1\Leftrightarrow y=0\)
* Nếu y = 0 thì \(4^y=4\Leftrightarrow y=1\)
Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;1\right)\right\}\)