Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+...+5^{2011}\)
\(5A=5+5^2+5^3+...+5^{2012}\)
=>\(5A-A=5^{2012}-1\Rightarrow A=\frac{5^{2012}-1}{4}\)
Phương trình ban đầu tương đương với: \(\frac{5^{2012}-1}{4}\left|x-1\right|=5^{2012}-1\)
\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
a, \(\overline{3x}+\overline{x3}=11\cdot11\)
\(\overline{3x}+\overline{x3}=121\)
\(33+\overline{xx}=121\)
\(\overline{xx}=121-33\)
\(\overline{xx}=88\)
\(\Rightarrow x=8\).
b, \(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=195\)
1 + 4 + 7 + ... +28 là dãy số cách đều
Số số hạng : (28 - 1) : 3 + 1 = 10 (số)
Tổng dãy số : \(\dfrac{\left(28+1\right)\cdot10}{2}=145\)
Để tìm x, ta có :
\(x\cdot10+145=195\)
\(x\cdot10=195-145\)
\(x\cdot10=50\Rightarrow x=5\)
c, \(\left(x-452\right)\cdot\text{a}=\overline{aaaa}\)
\(x-452=\overline{aaaa}:a\)
\(x-452=1111\)
\(x=1111+452=1563\)
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
Ta có:
\(\overline{xxyy}=x.1000+x.100+y.10+y=x.1100+y.11=11\left(x.100+y\right)\)
\(\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}=\overline{x+1}.11.\overline{y+1}.11\)
=> \(\overline{xxyy}=\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}\)
\(\Leftrightarrow11\left(x.100+y\right)=\overline{\left(x+1\right)}.11.\overline{\left(y+1\right)}.11\)
\(\Leftrightarrow x.100+y=11.\overline{x+1}.\overline{y+1}\)
\(\Leftrightarrow\overline{x0y}=11.\overline{x+1}.\overline{y+1}\)(1)
=> \(\overline{x0y}⋮11\)=> \(x-0+y⋮11\Rightarrow x+y⋮11\)=> x+y=11
và \(\overline{x0y}⋮x+1;\overline{x0y}⋮y+1\)
Em thay các giá trị x, y vào thử nhé