Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Do 2x+1 chia hết 2x+1 .
=> (2x+1)y chia hết cho 2x+1
Mà (2x+1)y=4x+7
=>4x+7 chia het cho 2x+1
=>2(2x+1)+5 chia hết cho 2x+1
Mà x \(\in\)N ->2x+1\(\in\)N
=>2x+1\(\in\)Ư(5)=(1;5)
=>x\(\in\)(0;2)
Nếu x = 0 => y=7
Nếu x = 2 => 5y=15->y=3
Vậy x=0;y=7
x=2;y=3
#Giải:
Theo bài ra ta có :
2xy + 2x + 2y = 0
2 (xy + x + y ) = 0
=>xy + x + y = 0
x (y + 1) + y = 0
=> x (y + 1) = 0 và y = 0
Nếu y = 0 thì :
=>x (0 + 1) =0
=>x = 0
Vậy x = 0 và y = 0
[ P/S : Hoq chắc ]
#By_Ami
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
1 a ) \(\left|x-11\right|+11-x=0\)
\(\Leftrightarrow\left|x-11\right|=x-11\)
\(\Leftrightarrow\orbr{\begin{cases}x-11=x-11\\x-11=11-x\end{cases}\Leftrightarrow\orbr{\begin{cases}\forall x\\x=11\end{cases}}}\)
p./s tham khảo nha
Câu a đề bài thiếu
b, \(x-3=y\left(x-1\right)\)
\(\frac{x-1-2}{x-1}=y\)
\(1-\frac{2}{x-1}=y\)
\(\frac{2}{x-1}=1-y\)
Có \(1-y\in Z\)
\(\Rightarrow\frac{2}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
Tính các trường hợp của x rồi thay vào tàm y và tìm những cặp thỏa mãn điều kiện
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
2x .(2-y) +y=0
-2x.(y-2)+y=0
-2x.(y-2)+y-2=-2
(-2x+1)(y-2)=-2
(1-2x)(y-2)=-2
còn lại bn tự tính nhé, xảy ra 2 TH
4x - 2xy + y = 0
<=> y = 2xy - 4x
<=> y = 2x(y - 2)
<=> x = \(\frac{y}{2\left(y-2\right)}=\frac{y}{2y-4}\)
Vì x là số tự nhiên nên : \(\frac{y}{2y-4}\) thuộc N
=>
\(2xy-6x+y=13\)
\(2x\left(y-3\right)+y-3=10\)
\(\left(2x+1\right)\left(y-3\right)=10\)
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+1=10\\y-3=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=1\\y-3=10\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=2\\y-3=5\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=5\\y-3=2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(0,13\right);\left(2,5\right)\right\}\)
2xy - y + 2x = 11
2xy + 2x - y = 11
2x.(y + 1) - y = 11
2x.(y + 1) - y - 1 = 10
2x.(y + 1) - (y + 1) = 10
=> (y + 1).(2x - 1) = 10
=> (y + 1) và (2x - 1) thuộc Ư(10)
Từ đây xét các trường hợp của (y + 1) và (2x - 1) là ra