Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2436 : x = 12 b) 6 . x - 5 = 613 c) 12 . ( x - 1 ) = 0 d ) 0 : x = 0
x = 2436 : 12 6.x = 613 + 5 x - 1 = 0 x = 0 . 0
x = 203 6x = 618 x = 0 + 1 x = 0
x = 618 : 6
x = 103
nhớ ủng hộ mik nghen mn
a, x= 203
b, 6.x= 613+5= 618=618:6=103
c, x=1
d, x là số tự nhiên bất kì khác 0
a) \(x=2436:12=203\).
b) \(6x-5=613\)\(\Leftrightarrow6x=613+5\)\(\Leftrightarrow6x=618\)\(\Leftrightarrow x=103\).
c) \(12.\left(x-1\right)=0\)\(\Leftrightarrow x-1=0:12\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=0+1=1\).
d) \(0.x=0\) suy ra x là số tự nhiên bất kì khác 0.
Đinh thị quỳnh như
a, 2436 : x = 12
x = 2436 : 12
x = 203
b, \(6\cdot x-5=613\)
a) 2436 : x = 12
x = 2436 : 12
x = 203
b) 6 . x - 5 = 613
6 . x = 613 + 5
6 . x = 618
x = 618 : 6
x = 103
c) 12 . ( x - 1 ) = 0
x - 1 = 0 : 12
x - 1 = 0
x = 0 + 1
x = 1
d) 0 : x = 0
x = 0 : 0
\(\Rightarrow\)không có x thỏa mãn
K MK NHA BN
THANK BN NHÌU
2436 : x = 12
=> x = 2436 : 12 = 203
6x - 5 = 613
=> 6x = 613 + 5 = 618
x = 618 : 6 = 103
x = 2436:12
x = 203
6.x-5 = 613
6.x = 613+5
6.x = 618
x = 618:6
x = 103
a) Ta có: (x+1)(y-2)=-2
nên x+1; y-2 là các ước của -2
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}
b) Ta có: (x+1)(xy-1)=3
nên x+1;xy-1 là các ước của 3
Trường hợp 1:
\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)
c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vây: (x,y)=(-1;1)
d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy: (x,y)=(0;0)
a) 2436 : x = 12
\(\Rightarrow\) x = 2436 : 12
\(\Rightarrow\) x = 203
b) 6x - 5 = 613
\(\Rightarrow\) 6x = 618
\(\Rightarrow\) x = 103
c) 12(x - 1) = 0
\(\Rightarrow\) x - 1 = 0
\(\Rightarrow\) x = 1
d) 0 : x = 0 (đúng \(\forall\)x \(\in\) N)
\(\Rightarrow\) x \(\in\) N
a) Ta có: 2436:x=12
nên x=2436:12
hay x=203
b) Ta có: 6x-5=613
nên 6x=618
hay x=103
c) Ta có: 12(x-1)=0
mà 12>0
nên x-1=0
hay x=1
d) Ta có: 0:x=0
nên \(x\in R;x\ne0\)