Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow x=30-18=12\\ b,\Rightarrow x+6=45:5=9\\ \Rightarrow x=9-6=3\\ c,\Rightarrow38-3x=4^2=16\\ \Rightarrow3x=38-16=22\\ \Rightarrow x=\dfrac{22}{3}\)
a) 8 + 2x = 20
2x = 20 - 8
2x = 12
x = 12 : 2
x = 6
Vậy x = 6
b) 70 - 5(x - 3) = 45
5(x-3) = 70 - 45
5(x-3) = 25
x - 3 = 25 : 5
x - 3 = 5
x = 5 + 3
x = 8
Vậy x = 8
c) (3x - 2^4). 7^3 = 2. 7^4
(3x - 16) . 147 = 2 . 1029
(3x - 16) . 147 = 2058
3x - 16 = 2058 : 147
3x - 16 = 14
3x = 14 + 16
3x = 30
x = 30 : 3
x = 10
Vậy x = 10
a/ 8+2.x=20
2x=20-8
2x=12
x=12:2=4
b/70-5.(x-3)=45
5.(x-3)=70-45=25
x-3=25:5=5
x=5+3=8
c/(3.x-24).73=2.74
(3.x-24).73=4802
3x-24 =4802:73=14
3x=14+24=30
x=30:3=10
tk nhen
a: =2/5-3/5+3/7=3/7-1/5
=15/35-7/35
=8/35
b: =>5/7:x=4/3
=>x=5/7:4/3=5/7*3/4=15/28
c: =>x-1/3=15/8:4/5=15/8*5/4=75/32
=>x=75/32+1/3=257/96
d: =>2x+1/8=2/7
=>2x=9/56
=>x=9/112
e: =>2x=10/3-5/4-3/4=10/3-2=4/3
=>x=2/3
\(a,\dfrac{2}{5}+\dfrac{3}{7}+\left(-\dfrac{3}{5}\right)\\ =\dfrac{2}{5}+\dfrac{3}{7}-\dfrac{3}{5}\\=\left(\dfrac{2}{5}-\dfrac{3}{5}\right)+\dfrac{3}{7}\\ =-\dfrac{1}{5}+\dfrac{3}{7}\\ =-\dfrac{7}{35}+\dfrac{15}{35}\\ =\dfrac{8}{35}\\ b,1-\dfrac{5}{7}:x=-\dfrac{1}{3}\\ =>\dfrac{5}{7}:x=1-\left(-\dfrac{1}{3}\right)\\ =>\dfrac{5}{7}:x=1+\dfrac{1}{3}\\ =>\dfrac{5}{7}:x=\dfrac{3}{3}+\dfrac{1}{3}\\ =>\dfrac{5}{7}:x=\dfrac{4}{3}\\ =>x=\dfrac{5}{7}:\dfrac{4}{3}\\ =>x=\dfrac{5}{7}.\dfrac{3}{4}\\ =>x=\dfrac{15}{28}\\ c,\dfrac{4}{5}\left(x-\dfrac{1}{3}\right)=\dfrac{15}{8}\\ =>x-\dfrac{1}{3}=\dfrac{15}{8}:\dfrac{4}{5}\\ =>x-\dfrac{1}{3}=\dfrac{15}{8}.\dfrac{5}{4}\\ =>x-\dfrac{1}{3}=\dfrac{75}{32}\\ =>x=\dfrac{75}{32}+\dfrac{1}{3}\\ =>x=\dfrac{257}{96}\)
\(d,\dfrac{2}{3}:\left(2x+\dfrac{1}{8}\right)=\dfrac{7}{3}\\ =>2x+\dfrac{1}{8}=\dfrac{2}{3}:\dfrac{7}{3}\\ =>2x+\dfrac{1}{8}=\dfrac{2}{3}.\dfrac{3}{7}\\ =>2x+\dfrac{1}{8}=\dfrac{2}{7}\\ =>2x=\dfrac{2}{7}-\dfrac{1}{8}\\ =>2x=\dfrac{16}{56}-\dfrac{7}{56}\\ =>2x=\dfrac{9}{56}\\ =>x=\dfrac{9}{56}:2\\ =>x=\dfrac{9}{112}\\ e,2x+\dfrac{3}{4}=\dfrac{10}{3}-\dfrac{5}{4}\\ =>e,2x+\dfrac{3}{4}=\dfrac{40}{12}-\dfrac{15}{12}\\ =>2x+\dfrac{3}{4}=\dfrac{25}{12}\\ =>2x=\dfrac{25}{12}-\dfrac{3}{4}\\ =>2x=\dfrac{25}{12}-\dfrac{9}{12}\\ =>2x=\dfrac{16}{12}\\ =>2x=\dfrac{4}{3}\\ =>x=\dfrac{4}{3}:2\\ =>x=\dfrac{4}{6}\\ =>x=\dfrac{2}{3}\)
2:
a: x+201=351
=>x=351-201
=>x=150
b: \(8\cdot5^2-27:25\)
\(=8\cdot25-\dfrac{27}{25}\)
\(=200-1,08=198,92\)
d: \(2023-23:\left[9+2\left(2^3-0,21\right)\right]\)
\(=2023-23:\left[9+16-0,42\right]\)
\(=2023-\dfrac{23}{25-0,42}\)
\(=2023-\dfrac{1150}{1229}=\dfrac{2485117}{1229}\)
b: 2(x-21)=84
=>x-21=84/2=42
=>x=42+21=63
c: 135-4(81-x)=55
=>4(81-x)=135-55=80
=>81-x=20
=>x=61
\(a,3\cdot x-15=x+35\)
\(\Rightarrow3x-x=35+15\)
\(\Rightarrow 2x=50\)
\(\Rightarrow x = 50:2\)
\(\Rightarrow x= 25\)
\(b,(8x-16)(x-5)=0\)
\(+, TH1: 8x-16=0\)
\(\Rightarrow8x=16\)
\(\Rightarrow x = 16:8\)
\(\Rightarrow x=2\)
\(+,TH2: x-5=0\)
\(\Rightarrow x =5\)
\(c,x(x+1)=2+4+6+8+10+...+2500\) \(^{\left(1\right)}\)
Đặt \(A=2+4+6+8+10+...+2500\)
Số các số hạng của \(A\) là: \(\left(2500-2\right):2+1=1250\left(số\right)\)
Tổng \(A\) bằng: \(\left(2500+2\right)\cdot1250:2=1563750\)
Thay \(A=1563750\) vào \(^{\left(1\right)}\), ta được:
\(x\left(x+1\right)=1563750\)
\(\Rightarrow x\left(x+1\right)=1250\cdot1251\)
\(\Rightarrow x =1250\)
#\(Toru\)
1: Để 2/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{2}{x}>0\\x\inƯ\left(2\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2\right\}\)
2: Để 3/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{3}{x}>0\\x\inƯ\left(3\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;3\right\}\)
3: Để 4/x là số tự nhiên là \(\left\{{}\begin{matrix}\dfrac{4}{x}>0\\x\inƯ\left(4\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;4\right\}\)
4: Để 5/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{5}{x}>0\\x\inƯ\left(5\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;5\right\}\)
5: Để 6/x là số tự nhiên thì \(\left\{{}\begin{matrix}\dfrac{6}{x}>0\\x\inƯ\left(6\right)\end{matrix}\right.\Leftrightarrow x\in\left\{1;2;3;6\right\}\)
6: Để 9/x+1 là số tự nhiên thì \(\left\{{}\begin{matrix}x+1>0\\x+1\inƯ\left(9\right)\end{matrix}\right.\Leftrightarrow x+1\in\left\{1;3;9\right\}\)
=>\(x\in\left\{0;2;8\right\}\)
7: Để 8/x+1 là số tự nhiên thì
\(\left\{{}\begin{matrix}x+1\inƯ\left(8\right)\\x+1>0\end{matrix}\right.\)
=>x+1 thuộc {1;2;4;8}
=>x thuộc {0;1;3;7}
8: Để 7/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(7)
=>x+1 thuộc {1;7}
=>x thuộc {0;6}
9: Để 6/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(6)
=>x+1 thuộc {1;2;3;6}
=>x thuộc {0;1;2;5}
10: Để 5/x+1 là số tự nhiên thì
x+1>0 và x+1 thuộc Ư(5)
=>x+1 thuộc {1;5}
=>x thuộc {0;4}
b: =>x(8-7)=-33
=>x=-33
c: =>-12x+60+21-7x=5
=>-19x=-76
hay x=4
d: =>-2x-2-x+5+2x=0
=>3-x=0
hay x=3
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3
a)\(8+2x=20\)
\(2x=14\)
\(x=\frac{14}{2}=7\)
vậy x=7
b)\(70-5\left(x+3\right)=45\)
\(5\left(x+3\right)=25\)
\(x+3=5\)
\(x=2\)
Vậy \(x=2\)
c)\(\left(3x-2^4\right).7^3=2.7^4\)
\(\left(3x-16\right)=\frac{2.7^4}{7^3}\)
\(3x-16=7.2\)
\(3x-16=14\)
\(3x=30\)
\(x=10\)
Vậy \(x=10\)