Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\overline{2a15b}\div\overline{cde}=90\)
\(\Rightarrow\overline{2a15b}=90.\overline{cde}=9.10.\overline{cde}\)
Ta thấy: \(9.10.\overline{cde}=\overline{...0}\)
\(\Rightarrow\overline{2a15b}=\overline{...0}\Rightarrow b=0\)
Lại có:
\(9.10.\overline{cde}⋮9\Rightarrow\overline{2a150}⋮9\)
\(\Rightarrow2+a+1+5+0=8+a⋮9\Rightarrow a=1\)
\(\Rightarrow\overline{2a15b}=21150=90.\overline{cde}\)
\(\Rightarrow\overline{cde}=21150\div90=235\)
Vậy số tự nhiên (không phải nguyên tố) \(\overline{abcde}\) là \(10235\)
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576
Theo bài ra, ta có:
=n2 -1
(100a+10b+c)=n2 -1 (100c+10b+a)=n2-4n+4
(100a+10b+c)-(100c+10b+a)=(n2 -1)-(n2-4n+4)
=>99a-99b=n2-1-n2+4n-4
99.(a-c)=4n-5
=> 4n-5 chia hết cho 99
4n-5 thuộc {0;99;198;297;396;495;594;693;....}
4n thuộc {5;104;203;302;401;500;...}
n thuộc {26;125;...}
vì nhỏ nhất nên n nhỏ nhất
=> n=26
=>=675
nhớ ticks cho mình nha
Ta có :
abc = 100a+10b+c (1)
cba = 100c+10b+a (2)
Thay (2) vào (1) ta được :
99( a - c ) = 4n - 5
=> 4n-5 \(⋮\) 99
Vì 100 \(\le\) abc \(\le\) 999 nên :
100 \(\le\) \(n^2-1\)\(\le\) 999 =>101 \(\le\) \(n^2-1\) \(\le\) 1000 => 11 \(\le\) 31 đến 39 \(\le\) 4n - 5 \(\le\) 119
Vì 4n - 5 \(⋮99\) nên :
n =26 ; abc = 675
Ta có:
\(\overline{xxyy}=x.1000+x.100+y.10+y=x.1100+y.11=11\left(x.100+y\right)\)
\(\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}=\overline{x+1}.11.\overline{y+1}.11\)
=> \(\overline{xxyy}=\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}\)
\(\Leftrightarrow11\left(x.100+y\right)=\overline{\left(x+1\right)}.11.\overline{\left(y+1\right)}.11\)
\(\Leftrightarrow x.100+y=11.\overline{x+1}.\overline{y+1}\)
\(\Leftrightarrow\overline{x0y}=11.\overline{x+1}.\overline{y+1}\)(1)
=> \(\overline{x0y}⋮11\)=> \(x-0+y⋮11\Rightarrow x+y⋮11\)=> x+y=11
và \(\overline{x0y}⋮x+1;\overline{x0y}⋮y+1\)
Em thay các giá trị x, y vào thử nhé
a, ab + bc + ca = abc
ab + bc + ca = a00 + bc
ab + ca = a00
Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1
Vì b + a có tận cùng là 0 => b = 9
c + a + nhớ 1 có tận cùng là 0 => c = 8
Vậy a=1,b=9,c=8
b, abc + ab + a = 874
Đổi chỗ các chữ số vào 1 cột, ta được:
abc aaa
+ +
ab => bb
+ +
a c
____ ______
874 874
Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)
=> bb + c = 874 - 777 = 97
Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)
=> c = 97 - 88 = 9
Vậy a = 7, b = 8, c = 9