Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a chia cho 5 dư 1 thì a phải có tận cùng là 6 hoặc 1.
Để a chia cho 2 dư 1 thì a phải có tận cùng là 1 số lẻ.
Suy ra a sẽ có tận cùng là 1.
Giả sử a có dạng là Ab thì chữ số tận cùng là b.
Vậy b = 1.
Ta có Ab = A1.
Để A1 chia hết cho 9 thì ( A + 1 ) phải chia hết cho 9.
Mà 1 chia cho 9 dư 1,suy ra A chia cho 9 phải chia cho 9 dư 8.
A = 8 ( loại vì 81 chia 7 không dư 3)
A = 17 ( Đúng ).
Vậy số tự nhiên a nhỏ nhất thỏa mãn yêu cầu đề bài là 171.
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Lớp 6 mới học
Gọi số cần tìm là a
ta có : a chia 2 dư 1 : chia 3 dư 2 ; chia 4 dư 3; chia 5 dư 4 ; chia 6 dư 5 ; chia 7 dư 6
=> a - 1 chia hết cho 2;3;4;5;6;7
2 = 2 ; 3 = 3 ; 4 = 22 ; 5= 5 ; 6 = 3 . 2 ; 7 = 7
=> BCNN (2;3;4;5;6;7) = 23 . 3 . 5 . 7 = 420
a = 420 - 1 = 419
Vậy số cần tìm là 419
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Giải:
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Gọi số cần tìm là A. Khi đó A + 1 là số chia hết cho 3; 5 và 7.
Vậy số nhỏ nhất chia hết cho 3; 5; 7 là: 3 x 5 x 7 = 105
Số cần tìm là: 105 - 1 = 104
ĐS: 104
gọi số cần tìm là a
vì a chia 2 dư 1, chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 6 dư 5, chia 7 dư 6 nên a+1 chia hết cho 2;3;4;5;6;7
mà a là số tự nhiên nhỏ nhất nên a+1 là số tự nhiên cần tìm nhỏ nhất
do đó a+1=420
suy ra a=419
Đáp án : 38
Vì 38 : 3 = 12 dư 2
38 : 5 = 7 dư 3
38 : 7 = 5 dư 4
trình bày hẳn ra