Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a
chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5 2n+7 chia hết cho 17
n=5+17k(2) (k là số tự nhiên)
Thay (2) vào (1) x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...) x=107 ;430;753;1076
Gọi tt là số tự nhiên cần tìm.
t:15t:15 dư 5⇒t=17m+55⇒t=17m+5
t:19t:19 dư 11⇒t=19n+1111⇒t=19n+11
Do đó:
t+216=17m+221⋮17t+216=17m+221⋮17
t+216=17n+2280⋮19t+216=17n+2280⋮19
⇒t+216⋮17⇒t+216⋮17 và ⋮19⋮19
Mà tt là số tự nhiên nhỏ nhất nên t+216t+216 là BCNN(17;19)BCNN(17;19)
BCNN(17;19)=323BCNN(17;19)=323
⇒t+216=323⇒t+216=323
⇒t=323−216=107⇒t=323−216=107
Vậy, số cần tìm là 107.
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Mình đưa ra cách giải đơn giản theo phương pháp sau để bạn áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)