Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a (a thuộc Z)
Ta có: số đó chia 13 dư 5 và chia 17 dư 9
=>a=13m+5 ( m thuộc Z)
a=17n+9 ( n thuộc Z)
=>a+8=13m+5+8=13+13=13(m+1)
a+8=17n+9+8=17n+17=17(n+1)
=> a+8 chia hết cho cả 13 và 17
Mà a nhỏ nhất=> a+8 nhỏ nhất=> a+8=BCNN(13,17)=221
=>a+8=221
=>a=221-8=213
Vậy số cần tìm là 213
Gọi số tự nhiên cần tìm là a. Theo bài ra ta có: a- 5 chia hết cho 13, a-9 chia hết cho 17
suy ra: a-5+13 chia hết cho 13, a-9+17 chia hết cho 17. Suy ra: a+8 chia hết cho 13, a+8 chia hết cho 17.
Suy ra: a+8 thuộc BC(13,17), a+8 thuộc{ 0,221,442,...} , mà a thuộc N
Suy ra: a thuộc { 213, 434, ...}, mà a nhỏ nhất nên a= 213
Vậy a= 213
(các từ có thể dùng kí hiệu thì phải dùng kí hiệu nhé)
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a
chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5
=> a = 17m + 5 a chia 19 dư 12
=> a = 19n + 12
Do đó: a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107
x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5 2n+7 chia hết cho 17
n=5+17k(2) (k là số tự nhiên)
Thay (2) vào (1) x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...) x=107 ;430;753;1076
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Mình đưa ra cách giải đơn giản theo phương pháp sau để bạn áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
đã bảo là làm cả lời giải vào mà bọn ngu kia