Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta gọi số đó là a :
ta có: a:18 dư 13 =) a -13 chia hết cho18=)a+5-18chia hết cho 18(1)
a:24 dư 19=) a - 19 chia hết cho 24=)a+5-24chia hết cho24(2)
a:30 dư 25 =) a-25 chia hết cho 30=) a+25chia hết cho 30(3)
từ (1),(2),(3)=) a+5 thuộc BC(18,24,30) mà bcnn là 360=) a+5 thuộc{0;360;720;1080;....}=) a thuộc{-2;358;718;1078;...} mà a là số có 4 cs nhỏ nhất =) a = 1078
ta có: a:18 dư 13 =) a -13 chia hết cho18=)a+5-18chia hết cho 18(1)
a:24 dư 19=) a - 19 chia hết cho 24=)a+5-24chia hết cho24(2)
a:30 dư 25 =) a-25 chia hết cho 30=) a+25chia hết cho 30(3)
từ (1),(2),(3)=) a+5 thuộc BC(18,24,30) mà bcnn là 360=) a+5 thuộc{0;360;720;1080;....}=) a thuộc{-5;355;715;1075;...} mà a là số có 4 cs nhỏ nhất =) a = 1078
Gọi số cần tìm là a (999 < a < 10 000)
Do a chia 18;24;30 dư lần lượt 13;19;25
nên a-13 chia hết cho 18; a-19 chia hết cho 24; a-25 chia hết cho 30
=> a-13+18 chia hết cho 18; a-19+24 chia hết cho 24; a-25+30 chia hết cho 30
=> a+5 chia hết cho 18;24;30
=> a+5 thuộc BC(18;24;30)
Mà BCNN(18;24;30)=360
nên a+5 thuộc B(360) => a+5=360.k (k thuộc N*)
Lại có: 999 < a < 10 000
=> 1004 < a+5 < 10 005
=> 1004 < 360.k < 10 005
=> 2 < k < 28
Mà a nhỏ nhất => k nhỏ nhất => k=3
=> a=360.3-5=1075
Vậy số cần tìm là 1075
a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)