Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
cho mình và kb với mình
Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.
Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k
37h + 1 = 39k + 14
37h – 37k = 2k + 13
37(h – k) = 2k + 13
Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ
Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1
a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất
Do đó h – k nhỏ nhất nên h – k = 1
Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482
Vậy a = 482
Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.
Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k
37h + 1 = 39k + 14
37h – 37k = 2k + 13
37(h – k) = 2k + 13
Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ
Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1
a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất
Do đó h – k nhỏ nhất nên h – k = 1
Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482
Vậy a = 482
3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
Theo đề bài ta có :
â : 37 dự 1 => 3a : 37 dư 3
a : 39 dư 14 => 3a : 39 dư 3
=> 3a + 3 chia hết cho 37 và 39
=> 3a + 3 thuộc BCNN(37 ; 39)
Ta có :
BCNN(37 ; 39) = 1443
=> 3a + 3 = 1443
=> 3a = 1440
=> a = 480
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
Không có số tự nhiên nào hết vì: