Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo bài ra:
$a-2\vdots 3; a-3\vdots 7$
$\Rightarrow a-2+3.2\vdots 3; a-3+7\vdots 7$
$\Rightarrow a+4\vdots 3$ và $a+4\vdots 7$
$\Rightarrow a+4=BC(3,7)\Rightarrow a+4\vdots BCNN(3,7)$
$\Rightarrow a+4\vdots 21$.
Đặt $a=21k-4$ với $k$ tự nhiên.
Vì $a$ chia $11$ dư $9$ nên:
$a-9\vdots 11\Rightarrow 21k-4-9\vdots 11$
$\Rightarrow 21k-13\vdots 11\Rightarrow 21k-13+11.5\vdots 11$
$\Rightarrow 21k+42\vdots 11$
$\Rightarrow 21(k+2)\vdots 11\Rightarrow k+2\vdots 11$
$\Rightarrow k=11m-2$ với $m$ tự nhiên.
Vậy $a=21k-4=21(11m-2)-4=231m-46$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ là số tự nhiên nhỏ nhất sao cho $231m-46\geq 0$
$\Rightarrow m\geq 1$.
$\Rightarrow m$ nhỏ nhất bằng 1.
$\Rightarrow a$ nhỏ nhất bằng: $231.1-46=185$
3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
Gọi số tự nhiên cần tìm là a
Theo bài ta có: 2a+1 chia hết cho 11;7 và 15 hay 2a +11 là ƯC(11,7,15)
Mà a nhỏ nhất nên 2a =BCNN(11,15,7)
Ta có:
BCNN(11,7,15)=7.11.15=1155 hay 2a+1=1155
Suy ra a=577
Vậy a=577
Cảm ơn bạn! Nhưng bạn có thể giải ra chi tiết dùm mình đc không?
Lời giải:
Gọi số cần tìm là $a$. Theo bài ra ta có:
$a-3\vdots 7\Rightarrow a-3+7\vdots 7$ hay $a+4\vdots 7$
$a-5\vdots 9\Rightarrow a-5+9\vdots 9$ hay $a+4\vdots 9$
$a-7\vdots 11\Rightarrow a-7+11\vdots 11$ hay $a+4\vdots 11$
Vậy $a+4\vdots (7,9,11)$
$\Rightarrow a+4\vdots BCNN(7,9,11)$ hay $a+4\vdots 693$
Vì $a$ là số tự nhiên và $a$ nhỏ nhất nên $a+4=693$
$\Rightarrow a=689$