Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên nhỏ nhất đó là a
Ta có : a chia 4 dư 3
a chia 5 dư 4
a chia 6 dư 5
=> a + 1 \(⋮\)4, 5, 6 và a+1 là BC(4,5,6)
Ta có 4=\(2^2\) 5=5 6=2.3
=>BCNN(4,5,6)= \(2^2\). 5 . 3 = 60
=> a+1 \(\in\)B(60) ={ 60, 120, 180, ..... }
=> a \(\in\){ 59 , 119 , 179 , .....}
Mà a \(⋮\)7 và là số nhỏ nhất nên a= 119
VẬy số cần tìm là 119
Gọi số cần tìm là A. Khi đó A + 2 là số chia hết cho 5; 6 và 7.
Vậy số nhỏ nhất chia hết cho 5; 6; 7 là: 5 x 6 x 7 = 210
Số cần tìm là: 210 - 2 = 208
ĐS: 208
ta có n-3 chia hết cho 5 6 7 8
nên n thuộc BC(5,6,7,8)
mà BCNN(5,6,7,8)=(tự tìm tiếp nha)
Gọi số cần tìm là a
=>a+2 thuộc BC(4,5,6)
Sau đó, khi bn tìm đc a+2 thì bn tìm a Xét các số trong tập hợp đó số nào chia hết cho 7 thì lấy
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$