K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
0
LN
1
ME
2
1 tháng 10 2018
a)31x32x33x........x3100
=31+2+3+4+...+100
=3(100+1)x(100-1+1):2
=3101x100:2
=35050
Bài b mình không biết làm
LN
0
PK
3
3 tháng 9 2021
\(n+7⋮n-3\Rightarrow n-3+10⋮n-3\)
Mà \(n-3⋮n-3\Rightarrow10⋮n-3\Rightarrow n-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)\(\Rightarrow n=\left\{-7;-2;1;2;4;5;8;13\right\}\)
Mà \(n\in N\Rightarrow n=\left\{1;2;4;5;8;13\right\}\)
vậy ...
C
7 tháng 7 2018
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4
$A=3+3^2+3^3+\dots+3^{100}$
$3A=3^2+3^3+3^4+\dots+3^{101}$
$3A-A=(3^2+3^3+3^4+\dots+3^{101})-(3+3^2+3^3+\dots+3^{100})$
$2A=3^{101}-3$
$\Rightarrow 2A+3=3^{101}$
Mặt khác: $2A+3=3^n$. Do đó: $3^n=3^{101}\Rightarrow n=101$ (tmdk)
\(A=3+3^2+3^3+...+3^{100}\\ 3A=3^2+3^3+...+3^{101}\\ 3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\\ 2A=3^{101}-3\\ A=\dfrac{3^{101}-3}{2}\)
Mà:
\(2A+3=3^n\\ =>2\cdot\dfrac{3^{101}-3}{2}+3=3^n\\ =>3^{101}-3+3=3^n\\ =>3^n=3^{101}\\ =>n=101\)