K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Theo đề: \(n+30=a^2\)\(n-11=b^2\)\(\left(a;b\in N\right)\)

Trừ vế theo vế, ta được: \(a^2-b^2=41\Rightarrow\left(a-b\right)\left(a+b\right)=41\)

Vì \(a-b< a+b\)nên ta có trường hợp sau

\(\hept{\begin{cases}a-b=1\\a+b=41\end{cases}\Rightarrow\hept{\begin{cases}a=21\\b=20\end{cases}}}\)

Vậy...

P/s: Bài này không dành cho lớp 6

27 tháng 3 2020

nope có bt :)))

22 tháng 3 2020

Với n+5 và n+30 là số chính phương

{n+5=a2n+30=b2{n+5=a2n+30=b2 ⇒n+5−n−30=a2−b2=(a−b)(a+b)=−25⇒n+5−n−30=a2−b2=(a−b)(a+b)=−25

Mà -25=-5.5=-1.25=-25.1


Giờ bn lập bảng các gt của a và b là đc

Chúc bn hok tốt :)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.

Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$

$\Rightarrow 2n\vdots 4$

$\Rightarrow n\vdots 2$

$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$

$\Rightarrow n\vdots 8(1)$

Mặt khác:

Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)

Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)

Do đó $n$ chia hết cho $3(2)$ 

Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)

5 tháng 1 2021

là gì vậy

 

1 tháng 3 2017

cau 1 :1,6

câu 2 : sai đề bài

cau 3 chua lam duoc 

cau 4 : chua lam duoc

cau 5 :101/10

1 tháng 3 2017

1) 2n - 5 \(⋮\)n + 1

    2(n + 1) - 7 \(⋮\)n + 1

Do 2(n+1) \(⋮\)n+1 nên 7 \(⋮\)n+1 \(\Rightarrow\)n + 1 \(\in\)Ư(7) = { 1; -1; 7; -7}

Với n + 1 = 1 \(\Rightarrow\)n = 0

     n + 1 = -1 \(\Rightarrow\)n = -2

     n + 1 = 7 \(\Rightarrow\)n = 6

     n + 1 = -7 \(\Rightarrow\)n = -8

Vậy n = { 0; -2; 6; -8}

4 tháng 4 2015

1.Mính ko bik

2.ko biik

3.20

 

12 tháng 12 2016

cau 3 =2

100%

21 tháng 9 2018

là 1,2,3,4,5,6,

ĐÚNG THÌ ĐỪNG QUÊN

24 tháng 9 2018

cảm ơn