Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(2.2^2+3.2^2+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)
\(\Rightarrow2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(\Rightarrow A=n.2^{n+1}-2.2^2-\left(2^3+2^4+...+2^n\right)\)
Đặt \(B=2^3+2^4+...+2^n\Rightarrow2B=2^4+2^5+...+2^{n+1}\)
\(\Rightarrow2B-B=\left(2^4+2^5+...+2^{n+1}\right)-\left(2^3+2^4+...+2^n\right)\)
\(\Rightarrow B=2^{n+1}-2^3\)
\(\Rightarrow A=n.2^{n+1}-2.2^2-\left(2^{n+1}-2^3\right)\)
=\(n.2^{n+1}-8-2^{n+1}+8=\left(n-1\right).2^{n+1}\)
Mà A=\(2^{n+11}\Rightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Rightarrow2^{n+1}.\left(n-1\right)=2^{n+1}.2^{10}\Rightarrow n-1=2^{10}=1024\Rightarrow n=2015\)
Vậy...
p hk tốt nha
\(a,A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-..-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\right)\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-1+\frac{1}{100}\)
\(A=\frac{2}{100}-1\)
\(A=\frac{1}{50}-1\)
\(A=\frac{-49}{50}\)
b,\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\) (1)
Đặt \(B=2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\)
\(\Rightarrow2B=2.\left(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+\left(n-1\right).2^n+n.2^{n+1}\)
\(2B-B=\left(2.2^3+3.2^4+4.2^5+..+\left(n-1\right).2^n+n.2^{n+1}\right)\)
\(=(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n)\)
\(B=-2^3-2^4-2^5-...-2^{n+1}-2.2^2\)
\(=-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}-2^3\)
Đặt \(C=2^3+2^4+2^5+2^n\)
\(\Rightarrow2C=2.(2^3+2^4+2^5+...+2^n)\)
\(C=2^4+2^5+2^6+...+2^{n+1}\)
\(2C-C=\left(2^4+2^5+2^6+...+2^{n+1}\right)-\left(2^3+2^4+2^5+...+2^n\right)\)
\(C=2^{n+1}-2^3\)
Khi đó : \(B=-(2^{n+1}-2^3)+n.2^{n+1}-2^3\)
\(=-2^{n+1}+2^3+n.2^{n+1}-2^3\)
=\(=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n-1}\)
Vậy từ (1) ta có:\(\left(n-1\right),2^{n+1}=2^{n+34}\)
\(2^{n+34}-\left(n-1\right).2^{n+1}=0\)
\(2^{n+1}.[2^{33}-\left(n-1\right)]=0\)
Do đó \(2^{33}-n+1=0\)( Vì \(2^{n+1}\ne0\)với mọi \(n\))
\(n=2^{33}+1\)
Vậy \(n=2^{33}+1\)
Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n
<=> S = 2S - S = (2.23 + 3.24 + 4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)
S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22
= -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8
Đặt A = 23 + 24 + 25 + ... + 2n
<=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n)
<=> A = 2n + 1 - 23
Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8
= 2n - 1.(n - 1) = 2n + 34
=> n - 1 = 2n + 34 : 2n - 1
=> n - 1 = 2n + 34 - n + 1
=> n - 1 = 235
=> n = 235 + 1
Ta có: \(2\cdot2^2+3\cdot2^2+...+n\cdot2^2=2^{n+10}\)
\(\Leftrightarrow2^2\cdot\left(2+3+...+n\right)=2^{n+10}\)
\(\Leftrightarrow\frac{\left(n+2\right)\left[\left(n-2\right)\div1+1\right]}{2}=2^{n+8}\)
\(\Leftrightarrow\left(n+2\right)\left(n+1\right)=2^{n+9}\)
Mà trong n+1 và n+2 luôn tồn tại 1 số lẻ và 2n+9 là lũy thừa của 2 nên ta xét 2 TH sau:
Nếu \(n+1=1\Rightarrow n=0\) thử lại ta thấy không thỏa mãn
Nếu \(n+2=1\Rightarrow n=-1\left(ktm\right)\) vì n là STN
Vậy không tồn tại số n thỏa mãn