Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(n+15⋮n-3\)
\(\Rightarrow\left(n-3\right)+18⋮n-3\)
\(\Rightarrow18⋮n-3\)(vì \(n-3⋮n-3\))
\(\Rightarrow n-3\inƯ\left(18\right)\)
\(\Rightarrow n-3\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{4;5;6;9;12;21\right\}\)
Do n > 5 nên:
\(\Rightarrow x\in\left\{6;9;12;21\right\}\)
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
a) -3 \(⋮\)3n+1
=> 3n+1 \(\in\)Ư(-3)
=> 3n+1 \(\in\){-1;1;3;-3}
Ta co bang:
3n+1 | -3 | -1 | 1 | 3 |
n | -4/3 | -2/3 | 0 | 2/3 |
loại | loại | chọn | loại |
KL
b) 8\(⋮\)2n+1
=> 2n+1\(\in\) Ư{8}
=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}
vì 2n là số chẵn => 2n+1 là số lẻ
=> 2n+1\(\in\){-1;1}
2n+1 | -1 | 1 |
n | -1 | 0 |
chọn | chọn |
c)n+1 \(⋮\)n-2
=> n-2 +3 \(⋮\)n-2
Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2
=>3\(⋮\)n-2
=>n-2\(\in\) Ư{3}
=>n-2\(\in\){-1;-3;1;3}
n-2 | -1 | 1 | -3 | 3 |
n | 1 | 3 | -1 | 5 |
chọn | chọn | chọn | chọn |
d)3n+2 \(⋮\)n-1
=>3(n-1)+5 \(⋮\)n-1
Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1
=>5\(⋮\)n-1
=>n-1\(\in\)Ư{5}
=>n-1\(\in\){-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
chọn | chọn | chọn | chọn |
e)3-n:2n+1
=> 2(3-n)\(⋮\)2n+1
=>6-2n\(⋮\)2n+1
=>7-(2n+1)\(⋮\)2n+1
Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1
=>2n+1 \(\in\)Ư{7}
=>2n+1\(\in\){-7;-1;1;7}
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
chọn | chọn | chọn | chọn |
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
a) n+15 chia hết cho n-3
=> n-3+18 chia hết cho n-3
Vì n-3+18 chia hết cho n-3; n-3 chia hết cho n-3 nên 18 chia hết cho n-3
=> n-3 thuộc Ư(18)
=> n-3 thuộc {1; 2; 3; 6; 9; 18}
Mà n > 5 nên n thuộc {6; 9; 18}
Câu b; c tương tự
a. n+15 chia het cho n-3 (voi n>5)
suy ra :\(\frac{n+15}{n+3}=\frac{n-3+18}{n-3}=1+\frac{18}{n-3}\)chia het cho n-3 thi 18 chia het cho n-3
suy ra n-3 thuoc uoc cua 18={1;2;3;9;18} ma n-3>5 nen n thuoc {6;9;18}
cac cau con lai lam tuong tu