K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

lên câu hỏi tương tự

18 tháng 9 2017

a)\(2.16\ge2^n>4\)

\(2.2^4\ge2^n>2^2\)

\(2^5\ge2^n>2^2\)

\(5\ge n>2\)

\(\Rightarrow n\in\left(5,4,3\right)\)

b)\(9.27\le3^n\le243\)

\(3^2.3^3\le3^n\le3^5\)

\(3^5\le3^n\le3^5\)

\(\Rightarrow n=5\)

a: \(\Leftrightarrow2^5\ge2^n>2^2\)

=>2<n<=5

hay \(n\in\left\{3;4;5\right\}\)

b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)

=>5<=n<=5

=>n=5

11 tháng 10 2021

a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)

Do \(n\in N\)

\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)

\(\Rightarrow n\in\left\{16;35\right\}\)

b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)

Do \(n\in N\)

\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)

\(\Rightarrow N\in\left\{32;69\right\}\)

4 tháng 12 2018

9.27 ≤ 3n ≤ 243 ⇒ 32.33 ≤ 3n ≤ 35

⇒ 35 ≤ 3n ≤ 35 ⇒ n = 5

13 tháng 2 2016

đây là toán lớp 6 nha bn

a mk chịu

b

vì 2n-3 : 2n+2

suy ra 2(2n-3) : 2n+2

       4n-6: 2n+2

mà 2(2n+2):2n+2

     4n+4  :2n+2

    4n+ 4 -(4n-6) : 2n+2

.còn lại tự tính

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

11 tháng 7 2018

Đề trong sbt phải không bạn

2.16>2n>2

==> 2.24>2n>2

==> 25>2n>2

==> 5>n>2

n€{5;4;3}

9.27>3n>243

==> 32.33>3n>35

==> 35>3n>35

==> 5>n>5

==> n=5

11 tháng 7 2018

Mk nhầm 

2.16>2n>4

2.24>2n>22

25>2n>22

==> 5>n>2

n€{5;4;3}

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40