\(x^{2n}+x^n+1\) chia hết cho \(x^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

Xét n=3k,  n=3k+1, n=3k+2 ta có trường hợp đầu có số dư hai trường hợp sao dư bằng 0 nên n là số tự nhiên chia hết cho 3

 

 

18 tháng 1 2021

bn lm rõ hơn đc ko ạ

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Bài 1:

a: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

3 tháng 7 2017

Bài 1:

\(x-x^2-1=-x^2+x-1\)

\(=-x^2+x-\frac{1}{4}-\frac{3}{4}\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Xảy ra khi \(x=\frac{1}{2}\)

Bài 2:

\(\frac{2n^2-n+2}{2n+1}=\frac{n\left(2n+1\right)-2n+2}{2n+1}=\frac{n\left(2n+1\right)}{2n+1}-\frac{2n-2}{2n+1}\)

\(=n-\frac{2n+1-3}{2n+1}=n-\frac{2n+1}{2n+1}-\frac{3}{2n+1}\)\(=n-1-\frac{3}{2n+1}\)

Để \(2n^2-n+2\) chia hết \(2n+1\)

Thì 3 chia hết \(2n+1\)\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n=\left\{....\right\}\) tự lm nốt

3 tháng 7 2017

Ta có : 2n- n  + 2 chia hêt cho 2n + 1

<=> 2n2 + n - 2n + 2 chia hết cho 2n + 1

<=> n(2n + 1) - 2n - 1 + 3  chia hết cho 2n + 1

<=> n(2n + 1) - (2n + 1) + 3 chia hết cho 2n + 1

<=> (2n + 1)(n - 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

2n + 1-3-113
2n-4-202
n-2-101
11 tháng 4 2017

Ta có: \(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)=> \(x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)

11 tháng 4 2017

Cũng khó đấy ,để mình nghĩa chút

18 tháng 10 2020

Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)

=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0

=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)

=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca

=> a2 + b2 + c2 \(\le\)2(ab + bc + ca) 

Dấu "=" xảy ra <=> a + b + c = 0

18 tháng 10 2020

Xí bài 2 ý a) trước :>

4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0

<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào T ta được : 

\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)

\(T=0+1+1=2\)