Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: \(\left(n+1\right)\sqrt{n}=\sqrt{\left(n+1\right)^2n}=\sqrt{\left(n+1\right)n\left(n+1\right)};n\sqrt{n+1}=\sqrt{n^2\left(n+1\right)}=\sqrt{n.n\left(n+1\right)}\)
=> \(\left(n+1\right)\sqrt{n}>n\sqrt{n+1}\) => \(2.\left(n+1\right)\sqrt{n}>\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\)
=> \(\frac{2}{2.\left(n+1\right)\sqrt{n}}
Ta có:
\(\frac{1}{\left(n-1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)
Xét \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\) = \(\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)=\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) < \(2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Vậy \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+.....+\frac{1}{\left(n+1\right)\sqrt{n}}<2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) = \(2\left(1-\frac{1}{\sqrt{n+1}}\right)<2\) (đpcm)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)
\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)
\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)
\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)
\(\Leftrightarrow\sqrt{n+1}\ge2015\)
\(\Leftrightarrow n+1=2015^2=4060225\)
\(V~~n=4060224\)
Mik xin lỗi nhưng cái này quá khả năng của mình rồi !
P/s : bạn có thể lên mạng tra xem nhé !
~ Thông cảm cho Mon ~