Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI KẾT BN KO!
TIỆN THỂ TK MÌNH LUÔN NHA!
KONOSUBA!!!
AI TK MÌNH MÌNH TK LẠI 3 LẦN.
\(A=n^2+n+6\)là số chính phương thì \(4A=4n^2+4n+24\)cũng là số chính phương. Giả sử 4A = p2 (p thuộc N)
\(\Rightarrow4n^2+4n+1+23=p^2\Rightarrow\left(2n+1\right)^2+23=p^2\Rightarrow p^2-\left(2n+1\right)^2=23\)
\(\Rightarrow\left(p+2n+1\right)\left(p-2n-1\right)=23\times1\)(2)
Với n ; p là số tự nhiên thì p+2n+1 là số lớn; p-2n-1 là số bé. Do đó:
(2) => \(\hept{\begin{cases}p+2n+1=23\\p-\left(2n+1\right)=1\end{cases}\Rightarrow2n+1=11\Rightarrow}n=5\)
Vậy với n = 5 thì A = n2 + n + 6 là số chính phương.
Để S là số chính phương
\(\Rightarrow2^n+1=k^2\Rightarrow2^n=k^2-1=\left(k-1\right).\left(k+1\right)\)
\(\text{Vì }2^n\text{ chẵn }\Rightarrow\left(k-1\right).\left(k+1\right)\text{ chẵn }\)=> k-1 và k+1 là 2 số chẵn liên tiếp.
Dễ thấy 2n =2.2..2 ( n chữ số 2)
Mà k-1 và k+1 là tích của 2 số chẵn liên tiếp (hơn kém nhau 2 đơn vị) => k-1=2 và k+1=4 <=> k=3
=> 2n+1=32=9 => 2n=8 <=> n=3
Vậy n=3
Đặt P = n4 + n3 + n2 + n + 1
Với n = 1 => A = 3 => loại
Với n \(\ge\)2 ta có:
(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2
=> 4A = (2n2 + n)2
Vậy: n = 2 thỏa mãn đề bài
*P/s: Mik ko chắc*
Đáp án sai mà mn
Thay n=2 ta có
\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương