Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^2+6n+1\vdots 6$
$\Rightarrow n^2+1\vdots 6$
Ta biết rằng 1 số chính phương khi chia cho $3$ dư $0,1$
$\Rightarrow n^2\equiv 0,1\pmod 3$
$\Rightarrow n^2+1\equiv 1,2\pmod 3$
$\Rightarrow n^2+1$ không chia hết cho $3$ với mọi $n\in\mathbb{N}$
$\Rightarrow n^2+1\not\vdots 6$ với mọi $n\in\mathbb{N}$
$\Rightarrow$ không tồn tại số $n$ thỏa mãn đề.
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
ta có
\(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)chia hết cho 30
cần biểu thức trên chia hết cho 4 là đủ
xét 2 trường hợp n chia hết cho 2 và n ko chia hết cho 2 thì thấy n chia hết cho 2 loại
vậy đk cần ở đây là n lẻ
đây là hướng làm, còn các phần nhỏ thì tra google hay sách tham khảo đều có cả bạn nhé