K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11

\(n-2000=a^2\left(a\in N\right)\Rightarrow n=a^2+2000\left(1\right)\)

\(n-2011=b^2\left(b\in N\right)\Rightarrow n=b^2+2011\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow a^2+2000=b^2+2011\)

\(\Rightarrow a^2-b^2=11\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)=11\)

\(\Rightarrow\left(a-b\right);\left(a+b\right)\in U\left(11\right)=\left\{1;11\right\}\)

\(\Rightarrow\left(a;b\right)=\left\{6;5\right\}\)

\(\left(1\right)\Rightarrow n=36+2000=2036\)

Kiểm tra \(\left(2\right)\Rightarrow n=25+2011=2036\left(đúng\right)\)

Vậy \(n=2036\)

7 tháng 11

    Đây là toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                             Giải:

Vì n - 2000 là số chính phương nên n - 2000 = k2 (k \(\in\) N)

Vì n - 2011 là số chính phương nên n - 2011 = d2(d\(\in\) N); d < k

Hiệu của hai số trên là: n - 2000 - (n - 2011) = k2 - d2

            n - 2000 - n + 2011 = k2 - d2

           (n - n) + (2011 - 2000) = k2 - d2

                0 + 11 = k2  - kd + kd - d2

                       11 = (k2 - kd) + (kd - d2)

                        11 = k(k - d) + d(k -  d)

                       11 = (k - d).(k + d); Ư(11) = {1; 11} 

  Vì k; d \(\in\)  N ta có:   k - d < k + d ⇒ k - d = 1; k + d = 11

       k - d = 1 ⇒ k = 1 + d ⇒ 1  + d  + d = 11  ⇒ d + d = 11 - 1

⇒ 2d = 10 ⇒ d = 10 : 2  = 5 ⇒ n - 2011 = d2 = 52 = 25

⇒ n = 2011 + 25 = 2036

Vậy n = 2036