Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b:Ta có : 2^n +15=2^n + 2.1.3 +3^2
=(2^n +3)^2=(1+3)^2
Suy ra :n=1.Vậy n=1
Đặt A = 28 + 211 + 2n = (24)2.(1 + 8 + 2n-8) = (24)2.(9 + 22n-8)
Để A là SCP thì (9 + 2n-8) phải là SCP
Đặt k2 = 9 + 22n-8
=> k2 - 32 = 2n-8
=> (k - 3)(k + 3) = 2n-8 (*)
Xét hiệu (k - 3) - (k + 3) = 6
=> k - 3 và k + 3 là các lũy thừa của 2 và có hiệu là 6
=> k + 3 = 8 và k - 3 = 2
=> k = 5; thay vào (*) ta có: 2.3 = 2n-8
=> n = 12
Thử lại ta có 28 + 211 + 212 = 802 (đúng)
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
nhớ chọn câu trả lời của mình nhe
Giả sử : 28 + 211 + 2n = a2 với a \(\in\) N thì :
2n = a2 - 48 \(\Leftrightarrow\) 2n = ( a - 48 ) ( a + 48 )
Từ đó , ta có : a + 48 = 2p
a - 48 = 2q , với p , q \(\in\) N và p + q = n , p > q
suy ra : 2p - 2q = 96 \(\Leftrightarrow\) 2q( 2q - p - 1 ) = 25 . 3
\(\Rightarrow\) q = 5 và p - q = 2 \(\Rightarrow\) p = 7 \(\Rightarrow\) n = 5 + 7 = 12
Thử lại ta có : 28 + 211 + 2n = 802
Do đó , n = 12
HOK TỐT !!!
Gọi biểu thữ trên là A
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8)
= (23)2.(1 + 2.22.1 + 24 +2n-8 - 24)
= (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương
<=> 2n-8=24
=> n-8=4
=> n=12
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
tạo hằng đẳng thức:
= (2^4)^2 + 2.2^4.2^6 + (2^6)^2 = (2^4 + 2^6)^2
=> n = 12
tạo hằng đẳng thức:
= (2^4)^2 + 2.2^4.2^6 + (2^6)^2 = (2^4 + 2^6)^2 là số chính phương
=> n=12
Vì \(n^2+2n+12\) là scp nên
\(n^2+2n+12=k^2\)
\(\Leftrightarrow\left(n^2+2n+1\right)+11=k^2\)
\(\Leftrightarrow k^2-\left(n+1\right)^2=11\)
\(\Leftrightarrow\left(k-n-1\right)\left(k+n+1\right)=11\)
Vì k-n-1<k+n+1 nên
\(\left(k-n-1\right)\left(k+n+1\right)=1\cdot11\)
\(\hept{\begin{cases}k-n-1=1\\k+n+1=11\end{cases}\Leftrightarrow\hept{\begin{cases}k-n=2\\k+n=10\end{cases}\Leftrightarrow}\hept{\begin{cases}k=6\\n=4\end{cases}}}\)
Vậy n=4
b) Tương tự