Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
a, \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(4⋮n-1\)hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)
Lập bảng tương tự
\(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)
mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(6n+9⋮3n+1\)
\(\Leftrightarrow6n+2+7⋮3n+1\)
\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)
\(\Leftrightarrow7⋮3n+1\)
\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)
mà \(n\in N\)
=> \(n\in\left\{0;2\right\}\)
Ta có: \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để \(\left(4n+3\right)⋮\left(2n+1\right)\)thì \(1⋮\left(2n+1\right)\)
Hay:\(2n+1\inƯ\left(1\right)\)
\(\Leftrightarrow2n+1\in\left(\pm1\right)\)
\(\Leftrightarrow2n\in\left(-2;0\right)\)
\(\Leftrightarrow n\in\left(-1;0\right)\)
Vì n là số tự nhiên \(\left(n\in N\right)\)nên giá trị của n cần tìm là: \(n=0\)
Vì chia hết ⇒ \(\dfrac{4n-5}{2n-1}=1\)\(\left(n\ne\dfrac{1}{2}\right)\)
\(\Leftrightarrow4n-5=2n-1\)
\(\Leftrightarrow2n=4\)
\(\Rightarrow n=2\)
Vậy số tự nhiên \(n=2\)
a,Để 4n-5 chia hết 13 thì 4n-5 sẽ có dạng 13k
=>4n-5=13k
<=>4n=13k+5
=>\(n=\frac{13k+5}{4}\)