Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: (3a+1)(b-5)=21=1.21=21.1=3.7=7.3. Kẻ bảng:
+/ 3a+1=1=>a=0
b-5=21=>b=26
+/ 3a+1=21 => a=20/3 (Loại)
+/ 3a+1=3 => a=2/3 (Loại)
+/ 3a+1=7 => a=2
b-5=3 => b=8
ĐS: a,b ={(0, 26); (2, 8)}
Bài 2:
Ta có: 3n+4 chia hết cho 2n-1 => 2(3n+4) chia hết cho 2n-1
2(3n+4)=6n+8=6n-3+11=3(2n-1)+11
Vậy để 3n+4 chia hết cho 2n-1 thì 11 phải chia hết cho 2n-1
=> Có 2 trường hợp:
+/ 2n-1=1 => n=1
+/ 2n-1=11 => n=6
ĐS: n={1;6}
a) => n thuộc Ư(12)
=> n thuộc ( 1; 2; 3;4 ;6; 12)
b) => x+1+14 chia hết cho x+1
Vì x+1 chia hết cho x+1 nên 14 chia hết cho x+1
=> x+1 thuộc Ư(14)
=> x+1 thuộc ( 1,2,7,14)
Ta có bảng
x+1 | 1 | 2 | 7 | 14 |
x | 0 | 1 | 6 | 13 |
Vậy x thuộc ( 0,1,6,13)
c)
n chia hết cho n nên 5 cũng chia hết cho n
rồi bạn làm như bài b
d)
n+3 +4 chia hết cho n+3
Vì n+3 chia hết cho n+3 nên 4 chia hết cho n+3
bạn tiếp tục làm như bài trên
SORRY BẠN NHA MẤY BÀI DƯỚI MÌNH CHƯA HỌC
Vì 2n+3 chia hết cho 2n+1
hay (2n+1)+2 chia hết cho 2n+1
Mà 2n+1 chia hết cho 2n+1
=>2 chia hết cho 2n+1
=>2n+1 \(\in\)Ư(2)={1;2}
Mà 2n+1 là số lẻ
=>2n+1=1
2n=1-1
2n=0
n=0:2
n=0
Vậy n=0
n + 2 chia hết cho n - 1
=> \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=\frac{n-1}{n-1}+\frac{3}{n-1}=1+\frac{3}{n-1}\)
vì n + 2 chia hết cho n - 1
=> 3 chia hết cho n - 1
Mà 3 chia hết cho 1 và 3
+) nếu n - 1 = 1 => n = 1 + 1 = 2
+) nếu n - 1 = 3 => n = 3 + 1 = 4
vậy n = 2 ; 4
Ta có \(n^2+n=n\left(n+1\right)\)
Để \(\left[n\left(n+1\right)\right]⋮5\)Thì
\(\hept{\begin{cases}\left(n+1\right)⋮5\\n⋮5\end{cases}}\)
Thấy \(n< n+1\)
Suy ra số nhỏ nhất có 3 chữ số chia hết cho 5 là 100.
Vậy n=100
2n + 1 chia hết n - 5
<=> 2n - 10 + 11 chia hết cho n - 5
<=> 11 chia hết cho n - 5 mà n là số tự nhiên
<=> n - 5 thuộc {-11;-1;1;11}
n - 5 = -11 ; n = -6 (loại)
n -5 = -1 ; n = 4 (chọn)
n - 5 = 1 ; n = 6 (chọn)
n - 5 = 11 ; n = 16 (chọn)
Vậy n \(\in\){4;6;16}
Ta có:
2n+1 chia n-5 dư 11
Để 2n+1 chia hết cho n-5 thì n-5 thuộc Ư(11)
Ta có bảng:
Vậy n={0;5}