Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu bài là các phân số 7/(n+9), 8/(n+10), 9/(n+11), ... ,31/(n+33) thì đơn giản => (n + 2) không chia hết cho 7, 2, 3, 5, ...., 31, tức không chia hết cho bất cứ số nguyên tố nào <= 31. => (n + 2) nhỏ nhất khi = số nguyên tố nhỏ nhất nhưng > 31 tức = 37 (mọi số giữa 2 số nguyên tố liên tiếp p_k và p_(k+1) do là hợp số nên phải có ít nhất 1 ước số nguyên tố <= p_k nên thậm chí không cần thử xem có nên loại 32, 33, ..., 36 hay không - loại ngay không cần "suy nghĩ") => n = 37 - 2 = 35
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Các phân số đã cho đều có dạng \(\frac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản nên n + 2 và a là số nguyên tố cùng nhau
Như vậy n + 2 phải nguyên tố cùng nhau với các số 7;8;9;....;31 và n + 2 là số nhỏ nhất
Vậy n + 2 phải là số nguyên tố nhỏ nhất lớn hơn 31 tức là n + 2 = 37, do đó số n cần phải tìm là 35